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Chapter 1

Key security features
1Password offers a number of notable security features.

True end-to-end encryption All cryptographic keys are generated by the client on your devices,
and all encryption is done locally. Details are in “A deeper look at keys.”

Server ignoranceWe’re never in the position of learning your account password or cryptographic
keys. Details are in “A modern approach to authentication.”

Nothing “crackable” is stored A typical web service will store a hash of the user’s password. If
captured, that can be used in password cracking attempts. Our two-secret key derivation mixes
your locally held Secret Key with your account password so data we store cannot be used in crack-
ing attempts. See “Making verifiers uncrackable with 2SKD” for details.

Thrice encrypted in transport When your already encrypted data travels between your device
and our servers, it’s encrypted and authenticated by Transport Layer Security (TLS) and our own
transport encryption. Details are in “Transport security.”

You control sharingOnly someone who holds the keys to a vault can share that data with someone
else. We don’t have those keys, so sharing decisions come from you. See “How vaults are shared
securely” for details.

Team-managed data recovery We don’t have the ability to recover your data if you forget your
account password or lose your Secret Key (since you have end-to-end security). But recovery keys
can be shared with team members. Details are in “Restoring a user’s access to a vault.”
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Chapter 2

Principles
1Password by AgileBits provides powerful administration of 1Password data (login credentials, for
example). This document describes how this happens securely.

The same approach to security that has driven the design of 1Password prior to offering 1Password
accounts went into the current design. The first one being we can best protect your secrets by not
knowing them.

Principle 1: Privacy by design

It’s impossible to lose, use, or abuse data one doesn’t possess. Therefore we design systems to
reduce the amount of sensitive user data we have or can acquire.

You’ll find Principle 1 exemplified throughout our system, from our inability to acquire your account
password during authentication through our use of Secure Remote Password (SRP) to our use of
two-secret key derivation (2SKD) which ensures we aren’t in a position to even attempt to crack
your account password. Likewise, our use of end-to-end encryption protects you and your data
from us and anyone who may gain access to our servers.

Our second principle follows directly from the first.

Principle 2: Trust the math

Mathematics are more trustworthy than people or software. Therefore, when designing a system,
prefer security that is enforced by cryptography rather than software or personnel policy.

Cryptography prevents one person from seeing the items they’re not entitled to see. Even if an
attacker were able to trick our servers (or people) into misbehaving, the mathematics of cryptog-
raphy would prevent most attacks. Throughout this document, assume all access control mecha-
nisms are enforced through cryptography unless explicitly stated otherwise.

We also strive to bring the best security architectures to people who are not security experts. This
is more than just building a product and system that people want to use, it’s part of the security
design itself.

Principle 3: People are part of the system

If the security of a system depends on people’s behavior, the system must be designed with an
understanding of how people behave.

If people are asked to do something that isn’t humanly possible, they won’t do it. Principle 3 is
obvious once it’s stated, but sadly it has often been overlooked in the design of security systems.
For example, not everyone wants to become a security expert or read this document, but everyone
is entitled to security whether or not they seek to understand how it works.

The underlying mechanisms for even seemingly simple tasks and functions of 1Password are often
enormously complex. Yet according to Principle 3, we don’t wish to confront people with that
complexity. Instead, we choose to simplify things so people can focus on accomplishing the task
at hand.
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CHAPTER 2. PRINCIPLES

Concealing the necessary complexity of the design from users when they just want to get things
done is all well and good, but we should never conceal the security design from security experts,
system and security administrators, or curious users. Thus we strive to be open about how our
system works.

Principle 4: Openness

Be open and explicit about the security design of our systems so others may scrutinize our deci-
sions.

A security system should be subject to public scrutiny. If the security of a systemwere to depend on
aspects of the design being kept secret, those aspects would actually be weaknesses. Expert and
external scrutiny is vital1 both for the initial design and for improving it as needed. This document
is part of our ongoing effort to be open about our security design and implementations.

Part of that openness requires that we acknowledge where we haven’t (yet) been able to fully
comply with all of our design principles. For example, we haven’t been able to deny ourselves
the knowledge of when you use 1Password in contrast to Principle 1; some finer grained access
control features are enforced by server or client policy instead of cryptographically (cf. 2); people
still need to put in some effort to learn how to use 1Password properly (cf. 3); and not everything
is yet fully documented (cf. 4). We do attempt to be clear about these and other issues as they
come up and will collect them in the appendix in “Beware of the leopard.”

Dangerous bend
On occations, this document will go into considerable technical detail that may not be of
interest to every reader. And so, following the conventions developed in The TEX Booka,
some sections will be marked as a dangerous bend. Most of the text should flow reasonably
well if you choose to ignore said sections.

a@TeXBook

Many of those dangerous bend technical discussions involve explaining the rationale for some of
the very specific choices we made selecting cryptographic tools and modes of operation. There
are excellent cryptographic libraries available, offering strong tools for every developer. But even
with the best available tools it’s possible to pick the wrong tool for the specific job or to use it
incorrectly. We feel it’s important not just to follow the advice of professional cryptographers, but
to have an understanding of where that advice comes from. That is, it’s important to know your
tools.

Principle 5: Know your tools

We must understand what security properties a tool has and doesn’t have so we use the correct
tool the right way for a particular task.

Throughout this document, there will be a process of elaboration. Descriptions presented in earlier
sections will be accurate as far as they go, but may leave some details for greater discussion at
some other point. Often details of one mechanism make complete sense only in conjunction with
details of another that in turn depend on details of the first. And so, when some mechanism or
structure is described at some point, it may not be the last word on that mechanism.

1Goldberg (2013)
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Chapter 3

Account password and Secret Key

1Password is designed to help you and your teammanage your secrets. But there are some secrets
you need to take care of yourself in order to be able to access and decrypt the data managed by
1Password. These are your account password and Secret Key2 introduced in this section.

Decrypting your data requires all three of the following: your account password, your Secret Key,
and a copy of your encrypted data. As discussed below, each of these is protected in different ways,
and each individually faces different threats. By requiring all three, your data is protected by a
combination of the best of each. Your account password and your Secret Key are your two secrets
used in a process we are calling two-secret key derivation (2SKD).

Figure 3.1: Two-secret key derivation combines multiple secrets when deriving authentication and encryp-
tion keys.

Figure 3.2: Your account password, like a combination to a lock, is something only you know.

2The Secret Key was previously known as the Account Key, and that previous name may appear in internal labelling.
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CHAPTER 3. ACCOUNT PASSWORD AND SECRET KEY

3.1 Account password

One of the secrets used in two-secret key derivation (2SKD) is your account password, and your
account password exists only in your memory. This fact is fantastic for security because it makes
your account password (pretty much) impossible to steal.

Secrets that must be remembered and used by humans tend to be guessable by automated pass-
word guessing systems. We take substantial steps to make things harder for those attempting to
guess passwords, but it’s impossible to know the capabilities that a well-resourced attacker may
be able to bring to bear on password cracking. This is the reason we also include an entirely
unguessable secret — your Secret Key — in our key derivation. See Story 1 for an illustration of
how your Secret Key comes into play defending you in case of a server breach.

Story 1: A (bad) day in the life of your data
Nobody likes to talk about bad things happening, but sometimes we must.
Oscar somehow gains access to all of the data stored on the 1Password server. We don’t
know how, and we certainly tried to prevent it, but nonetheless, this is the starting point for
our story.
Among the data Oscar acquires is an encrypted copy of your private key. (We store that on
our server so that we can deliver it to you when you first set up 1Password on a new device.)
If he can decrypt that private key, he’ll be able to do some very bad things. Nobody (other
than Oscar) wants that to happen.
Oscar will take a look at the encrypted private key and see that it’s encrypted with a ran-
domly chosen 256-bit AES key. There’s no way he’ll ever be able to guess that. But the
private key is encrypted with a key derived from your account password (and other stuff)
so he figures that if he can guess your account password he will be able to get on with his
nefarious business.
But Oscar cannot even begin to launch a password guessing attack. This is because the
key that encrypts your private key is derived not only from your account password, but also
from your Secret Key. Even if he happens to make a correct guess, he won’t know that he
has guessed correctly. A correct guess will fail the same way an incorrect guess will fail
without the Secret Key.
Oscar has discovered – much to his chagrin and our delight – even all the data held by
AgileBits is insufficient to verify a correct guess at someone’s account password. “If it
weren’t for two-secret key derivation, I might have gotten away with it,” mutters Oscar. He
probably shouldn’t have bothered stealing the data in the first place. Without the Secret
Keys, it’s useless to him.
If Oscar had read this document, he would’ve known that he can’t learn or guess your ac-
count password or Secret Key from data held or sent to 1Password.

3.2 Secret Key

Your account password is one of the secrets used in two-secret key derivation (2SKD), and your
Secret Key is the other. Your Secret Key is generated on your computer when you first sign up, and
is made up of a non-secret version setting, (“A3”), your non-secret Account ID, and a sequence of 26
randomly chosen characters. An example might be A3-ASWWYB-798JRYLJVD4-23DC2-86TVM-H43EB. This
is uncrackable, but unlike your account password, isn’t something you’re expected to memorize
or even type on a keyboard regularly.
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3.3. EMERGENCY KIT

Figure 3.3: Your Secret Key is a high-entropy secret you have on your devices.

The hyphens are not part of the actual Secret Key but used to improve readability. The version
information is neither random nor secret. The Account ID is random, but not secret, and the
remainder is both random and secret. In talking about the security properties of the Secret Key,
we’ll be talking only about the secret and random portion. At other times we may refer to the
whole thing, including the non-secret parts.

There are slightly more than 2128 possible Secret Key3 likely, thus placing them well outside the
range of any sort of guessing. But while the Secret Key is unguessable, it’s not the kind of thing
that can be committed to human memory. Instead of being stored in your head, your Secret Key
will be stored on your device by your 1Password client.

3.3 Emergency Kit
AgileBits has no ability to decrypt your or your team’s data, nor do we have the ability to recover
or reset passwords. The ability to recover or reset the account password or Secret Key would give
us (or an attacker who gets into our system) the ability to reset a password to something known
to us or the attacker. We therefore deny ourselves this capability.

This means you must not forget or lose the secrets you need to access and decrypt your data. This
is the reason we very strongly encourage you to save, print, and secure your Emergency Kit when
you first create your account. Story 2 illustrates how it might be used.

Story 2: A day in the life of an Emergency Kit
It’s been lonely in this safety deposit box all these months. All I have for company is a Last
Will, which does not make for the most cheerful of companions. But I’ve been entrusted
with some of Alice’s most important secrets. It’s little wonder she keeps me out of sight
where I can’t reveal them to anyone.
It was a crisp February day that winter before last when Alice first clicked “Save Emergency
Kit.” She probably thought that she would never need me, but she dutifully (and wisely)
printed me out and wrote her account password on me. I already contained her Secret Key
along with some non-secret details. She securely deleted any copy of me from her computer
and promptly took me to her bank, where I got locked away in this box. Perhaps never to
be looked at again.
But today is different. Today I’m the genie released from long imprisonment. Today I’ll do
magic for my master, Alice. It seems she had a catastrophic disk crash and her backups
weren’t working as expected. She remembered her account password, but she needed to
come to me for her Secret Key. With a fresh copy of 1Password on a new computer, Alice
can present the QR code I bear to teach 1Password all the account details, including the
Secret Key. All Alice will have to do is type in her account password.
What a day! Now I’m being returned to the bank vault. I hope Alice won’t have reason to
call upon me again, but we both feel safe knowing I’m here for her.

3Characters in the Secret Key are drawn uniformly from a set of 31 uppercase letters and digits. With a length of 26,
that gives us 3126 which is just a tad over 128 bits.
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CHAPTER 3. ACCOUNT PASSWORD AND SECRET KEY

Your Emergency Kit is a piece of paper (once you’ve printed it) that will contain your account
details, including your Secret Key. Figure 3.4 shows an example. It also has space for you to
write your account password. If you’re uncomfortable keeping both your Secret Key and account
password on the same piece of paper, you may decide to store a written backup of your account
password separately from your Emergency Kit.

Figure 3.4: 1Password Emergency Kit

It’s a challenge for us to find ways to encourage people to print and save their Emergency Kits.
During the 1Password beta period we added a number of places in which we nudged people toward
this. This includes making it clearer what should be done with the Emergency Kit, as in Figure
3.5, and by incorporating it among a set of “quests” users are to encourage to complete after first
starting to use 1Password.

Figure 3.5: We encourage users to save their Emergency Kits by a variety of means. One of those means is
to make it visually clear what is expected.
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Chapter 4

A modern approach to authentica-
tion
1Password is an end-to-end (E2E) encryption system. Thus, the fundamental security of your data
rests on the fact that your data is encrypted and decrypted on your local device using keys derived
from your secrets which AgileBits has no access to. This end-to-end (E2E) encryption is the primary
component of 1Password’s security. How that encryption takes place is the subject of “How vault
items are secured.”

End-to-end encryption
Data is only encrypted or decrypted locally on the users’ devices with keys that only the end
users possess. This protects the data confidentiality and integrity from compromises during
transport or remote storage.

Nonetheless, there is an authentication component to 1Password. For the most part, its job is
to ensure an individual only receives the encrypted data they should receive. “Access control
enforcement” contains more details about what powers are granted to a client that successfully
authenticates.

Traditionally, AgileBits has been wary of authentication-based security, and that wariness has man-
ifested in the design of 1Password in three ways:

1. Our overall design is fundamentally based on end-to-end (E2E) encryption.

2. We’ve introduced two-secret key derivation (2SKD) to dramatically reduce the risk associated
with compromise of authentication verifiers.

3. We don’t rely on traditional authentication mechanisms, but instead use Secure Remote Pass-
word (SRP) to avoid most of the problems of traditional authentication.

Dangerous bend
Client authentication keys are derived from the same user secrets from which the encryp-
tion keys are derived (so you have one password for 1Password). So even though the core
of 1Password’s security doesn’t depend on authentication, we must take extra care in the
security of authentication so an attacker can’t work backwards from an information leak in
an authentication process to discover secrets that might aid in decryption.

4.1 What we want from authentication
Your account password and Secret Key are used to derive a key that’s used for authenticating
with the service we host.4 Our service needs to know that you are who you say you are. Your
1Password client needs to prove to the service it has your account password and Secret Key. Only

4Your account password and Secret Key are also used to derive a different key used for the E2E, which is discussed in
later sections.
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CHAPTER 4. A MODERN APPROACH TO AUTHENTICATION

then will it give you access to your encrypted data (which your client still must decrypt) or other
administrative rights.

When Alice authentication to Bob, she does so by proving she has access to a secret5 that only she
should have access to. Bob performs some analysis or computation on the proof that Alice offers
to verify it demonstrates Alice’s access to her secret.

Story 3: A very traditional authentication exchange
[ALICE approaches castle gate where BOB is on duty as a guard.]
BOB: Who goes there?
ALICE: It is I, Alice. [ALICE identifies herself.]
[BOB checks checks his list of people who are authorized to enter the castle to see if ALICE
is authorized.]
BOB: What is the password? [BOB asks ALICE to prove her identity.]
ALICE: My password is xyzzy. [She provides proof.]
[BOB verifies that’s the correct password for ALICE.]
BOB: You may enter. [BOB raises the portcullis and ALICE enters.]

We want an authentication system to allow Alice to reliably authenticate herself to Bob without in-
troducing other security problems, so there are a number of security properties we would like from
a good authentication system. There’s substantial overlap among them, but they’re all technically
separate.

Table 4.1: Sign-in system desiderata

Prove client ID Prove to the server the user holds the user’s
secret.

Prove server ID Prove to the user the server holds the server’s
secret.

Eavesdropper safe Doesn’t reveal any information about either
secret in the process.

Not replayable Can’t be replayed by someone who has
recorded the process and wants to repeat the
exchange to fake a sign-in at another time.

No secrets received Doesn’t reveal any information about the
user’s password to the server.

Session key Establishes a new secret that can be used as
an encryption key for the session.

No cracking Server never acquires enough information to
facilitate a password-cracking attempt.

4.1.1 Traditional authentication
With a traditional authentication system, the client (such as a web browser) sends a user secret
(typically a password) to the server. The server then processes that password to determine whether
or not it’s correct according to its records. If the server determines it’s correct, it will consider
that user authenticated.

5By broadening the definition of “secret,” we could also cover biometric authentication with this description.
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4.1. WHAT WE WANT FROM AUTHENTICATION

The simplest way to prove you know a secret is to say it, and that’s what the client does in a
traditional system. It simply sends the username and the password to the server. A very traditional
version of this is illustrated in Story 3.

This traditional design has a number of shortcomings. Indeed, it only satisfies the first authentica-
tion disideratum. The most glaring failures of traditional authentication include:

• Anyone able to eavesdrop on the conversation will learn the client’s secret. In the
exchange in Story 3 that would correspond to an eavesdropper hearing and learning Alice’s
secret password.

• If the client is talking to the wrong server it reveals its secret to that potentially
malicious server. In Story 3, that would correspond to Bob not really being the castle
guard, and Alice revealing to her password to an enemy.

In a typical internet login session, those shortcomings are addressed by Transport Layer Security
(TLS) to keep the conversation between the client and the server private as it travels over a network
and to prove the identity of the server to the client. As discussed in “Transport security,” we make
use of TLS but don’t want to rely on it.

4.1.2 Password-Authenticated Key Exchange
The modern approach to covering most of the security properties of authentication we seek is
to find a way for the client and server to prove to each other they each possess the appropriate
secret without either of them revealing any secrets in the process. This is done using a password-
authenticated key exchange (PAKE).

Using some mathematical magic, the server and client are able to send each other puzzles that can
only be solved with knowledge of the appropriate secrets, but no secrets are transmitted during
the exchange. Furthermore, the puzzles are created jointly and uniquely during each session so
it’s a different puzzle each time. This means that an attacker who records one authentication
session will not be able to play that back in an attempt to authenticate.

The “key exchange” part of password-authenticated key exchange (PAKE) establishes a session
key: A secret encryption key that the parties can use for the life of the session to encrypt and
validate their communication. With 1Password we use this session key to add an additional layer6
of encryption in our communication between client and server.

A well-designed password-authenticated key exchange (PAKE) – we use Secure Remote Password
(SRP), detailed in “Secure Remote Password” – can satisfy all the requirements we’ve listed ex-
cept for one. On its own, a PAKE would still leave something crackable on the server, something
unacceptable.

4.1.3 Making verifiers uncrackable with 2SKD
A password-authenticated key exchange (PAKE) still doesn’t solve the problem of a server acquir-
ing and storing information that could be used in a password cracking attempt. A server holds a
long-term verifier that’s mathematically related to a long-term authentication secret used by the
client. Although this verifier isn’t a password hash, it can be considered one for the sake of this
immediate discussion. If the client’s long-term secret is derived from something guessable (such
as a weak password), the verifier stored by the server could be used to help test guesses of that
user’s password.

We can (and do) take measures to protect the verifiers we store from capture, and the client uses
slow hashing techniques in generating the verifier. These are essential steps, but given the nature
of what 1Password is designed to protect, we feel those steps are insufficient on their own.

6This layer provides authenticated encryption for the communication between client and server that is in addition to the
security provided by TLS and 1Password’s fundamental E2E encryption of user data.
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We use two-secret key derivation (2SKD) to ensure data held by the server is not sufficient to
launch a password cracking attempt on a user’s account password. An attacker who captures
server data would need to make guesses at a user’s account password and have the user’s 128-bit
strong Secret Key.

It’s for this final desideratum we introduced two-secret key derivation (2SKD). With this, the in-
formation held on our systems cannot be used to check whether an account password guess is
correct or not. Figure 4.1 summarizes which security properties we can achieve with various
authentication schemes.

Figure 4.1: Authentication schemes and what they do for you. The “+multi-factor authentication (MFA)”
column lists the security properties of using traditional authentication with multifactor authentication. The
“+2SKD” column lists the security properties of using a PAKE with twosecret key derivation, as done in
1Password. The first column lists our desired security properties.

Although the internals of our authentication systemmay appear to bemore complex than otherwise
needed for a system whose security is built upon end-to-end (E2E) encryption, we need to ensure
that an attack on our authentication system doesn’t expose anything that could be used to decrypt
user data. Therefore the system has been designed to be strong in its own right, and provide no
information either to us or an attacker that could threaten the confidentiality of user data.
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Chapter 5

How vault items are secured

Items in your vaults are encrypted with Advanced Encryption Standard (AES) using 256-bit keys
that are generated by the client on the device, using a cryptographically appropriate random
number generator. This generated key becomes your vault key and is used to encrypt and decrypt
the items in your vault.

1Password uses Galois Counter Mode (GCM) to provide authenticated encryption, protecting your
encrypted data from tampering. Proper use of authenticated encryption offers a defense against
a broad range of attacks, including Chosen Ciphertext Attacks (CCA).

Figure 5.1: Algorithm for creating and populating a vault

The vault key is used to encrypt each item in the vault. Items contain overviews and details that
are encrypted separately by the vault key.7 We encrypt these separately so we can quickly decrypt
the information needed to list, sort, and find items without having to decrypt everything in the
vault first.

Item overviews include the item fields needed to list items and quickly match items to websites,
such as Title, URLs, password strength indicator, and tags. Information that’s presented to the
user when items are listed, along with the information needed to match an item to a web page
(URL), are included in the overview.

Item details include the things that don’t need to be used to list or quickly identify them, such as
passwords and contents of notes.

7The overviews and the details are encrypted with the same key. This is a change from the design of the OPVault
1Password data format described in OPVault Design (AgileBits 2015).
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CHAPTER 5. HOW VAULT ITEMS ARE SECURED

If you have access to a vault, a copy of the vault key is encrypted with your public key. Only you,
the holder of your private key, are able to decrypt that copy of the vault key. Your private key is
encrypted with key encryption key (KEK) derived from your account password and Secret Key.

Your private/public key pair is created on your device by your client when you first sign up. Neither
we nor a team administrator ever have the opportunity to capture your private key. Your public
key, being a public key, is widely shared.

5.1 Key derivation overview

Key derivation is the process that takes your account password and Secret Key and produces the
keys you need to decrypt your data and to sign in to the 1Password server. It’s described more
fully in “Key derivation.”

Salt
A cryptographic salt is a non-secret value that is added to either an encryption process or
hashing to ensure that the result of the encryption is unique. Salts are typically random and
unique.

Your account password will be trimmed and normalized. A non-secret salt is combined with your
email address8 and other non-secret data using hash-based key derivation function (HKDF) to
create a new 32-byte salt.

Your account password and the salt are passed to PBKDF2-HMAC-SHA256 with 650,000 iterations.
This results in 32 bytes of data, which are combined with the result of processing your Secret Key.

Your Secret Key is combined with your non-secret account ID and the name of the derivation
scheme by HKDF to produce 32 bytes of data. This will be XORed with the result of processing
your account password.

The resulting 32 bytes of material (derived from both your account password and Secret Key) are
your Account Unlock Key (AUK) which is used to encrypt the key (your private key) that’s used to
decrypt the keys (vault keys) that are used to encrypt your data.

By encrypting copies of vault keys with an individual’s public key, it becomes easy to securely add
an individual to a vault. This secure sharing of the vault key allows us to securely share items
between users.

5.2 A first look at key sets

We organize the public/private key pairs together with the symmetric key that’s used to encrypt
the private key into key sets. Our key set make extensive use of JSON Web Key (JWK) objects.

8The reasons for binding your encryption key tightly with your email address are discussed in “Restoring a user’s access
to a vault.”
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Figure 5.2: A key set is a collection of JWK keys together with an identifier and information about what other
key set is used to encrypt it.

A common type of key set will have the structure listed in Figure 5.2. When we speak of encrypting
a key set, we generally mean encrypting the symmetric key that’s used to encrypt the private key.

key set are fairly high-level abstractions; the actual keys within them have a finer structure that
includes the specifications for the algorithms, such as initialization vectors. Symmetric encryp-
tion is AES-256-GCM, and public key encryption is RSA-OAEP with 2048-bit moduli and a public
exponent of 65537.

Story 4: A day in the life of an item being created
In the beginning there was the vault, but it was empty and had no key.
And Alice’s 1Password client called out to the cryptographically secure random number
generator, “Oh, give me 32 bytes,” and there were 32 random bytes. These 256 bits were
called the “vault key.”
And the vault key was encrypted with Alice’s public key, so only she could use it; a copy of
the vault key was encrypted with the public key of the Recovery Group, lest Alice become
forgetful.
Alice went forth and named things to become part of her vault. She called forth the PIN
from her account on the photocopier and added it to her vault. The photocopier PIN, both
its details and its overview, were encrypted with the vault key.
And she added other items, each of its own kind, be they Logins, Notes, Software Licenses,
or Credit Cards. And she added all of these to her vault, and they were all encrypted with
her vault key. On the Seventh day, she signed out.
And when she signed in again, she used her account password, and 1Password used her
Secret Key, and together they could decrypt her private key. With her private key she de-
crypted the vault key. And with that vault key she knew her items.
And Alice became more than the creators of 1Password, for she had knowledge of keys and
items which the creators did not. And it was good.

Once a vault has been created, it can be securely shared by encrypting the vault key with the
recipient’s public key.

5.2.1 Flexible, yet firm
Since the right choices for the finer details of the encryption schemes we use today may not be the
right choices tomorrow, we need some flexibility in determining what to use. Therefore, embedded
within the key set are indications of the ciphers used. This would allow us to move from RSA with
2048-bit keys to 3072-bit keys, relatively easily when the time comes, or to switch to Ellipic Curve
Cryptography (ECC) at some point.

Because we supply all the clients, we can manage upgrades without enormous difficulty.
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Story 5: Days in the life of an algorithm upgrade
Setting Some time in the not-so-distant future.
Day one “Hmm,” says Patty. “It looks like 2048-bit RSA keys will have to be phased out.
Time we start transitioning to 3072-bit keys.”
The next day We ensure all our clients are able to use 3072-bit keys if presented with them.
Some weeks later We release clients that use 3072 bits when creating new public keys.
(Public keys are created only when a new account is created or a new Group is created
within a team.)
Further along ”We should go further and start replacing the older keys.” (Of course, we
can’t replace anyone’s keys, as we don’t have them.)
After some development We issue updated clients that generate new public keys, and
anything encrypted with the old key will be re-encrypted by the client with the new key.
Time to get tough We can have the server refuse to accept new data encrypted with the
older keys. The server may not have the keys to decrypt these key sets, but it knows what
encryption scheme was used.
More bad news on 2048-bit keys We learn that even decrypting stuff already encrypted
with the older keys turns out to be dangerous. [Editor’s Note: This is a fictional story.] We
need to prevent items encrypted with 2048-bit keys from being trusted automatically.
Drastic measures If necessary, we can issue clients that will refuse to trust anything en-
crypted with the older keys.

Building in the flexibility to add new cryptographic algorithms while limiting the scope of down-
grade attacks isn’t easy. But as illustrated in Story 5, we’re the single entity responsible for issuing
clients and managing the server, so we can defend against downgrade attacks through a combina-
tion of client and server policy.
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Chapter 6

How vaults are shared securely
Sharing items among members of the same 1Password account happens at the vault level. This
allows those members to share and mutually maintain sets of items. Through the magic of public
key encryption, this happens without the 1Password service (or us, its operators) ever having the
keys or secrets necessary to decrypt shared data.

As described in “How vault items are secured,” each user has a personal key set that includes a
public/private key pair, and each vault has its own key used to encrypt the items within that vault.
At the simplest level, to share the items in a vault, one merely needs to encrypt the items with the
public key of the recipient.

Story 6: A day in the life of a shared vault
Alice is running a small company and would like to share the office Wi-Fi password and
the keypad code for the front door with the entire team. Alice will create the items in the
Everyone vault, using the 1Password client on her device. These items will be encrypted
with the vault key. When Alice adds Bob to the Everyone vault, Alice’s 1Password client will
encrypt a copy of the vault key with Bob’s public key.
Bob will be notified that he has access to a new vault, and his client will download the
encrypted vault key, along with the encrypted vault items. Bob’s client can decrypt the vault
key using Bob’s private key, giving him access to the items within the vault and allowing
Bob to see the Wi-Fi password and the front door keypad code.
The 1Password server never has a copy of the decrypted vault key, and is never in a position
to share it. Only someone with that key can encrypt a copy of it. Thus, an attack on our
server could not result in unwanted sharing.

6.1 Getting the message (to the right people)
It’s important that the person sharing a vault shares it with the right person, and uses the public
key of the intended recipient. One of the primary roles of the 1Password server is to ensure that
public keys belong to the right email addresses.

Dangerous bend
1Password does not attempt to verify the identity of an individual. The focus is on tying a
public key to an email address. Internally we bind a key set to an email address, but we
have no information about who controls that email address.

Connecting users with their keys as they register, enroll new devices, or simply sign in is a funda-
mental part of the service. How this happens without giving us the ability to acquire user secrets
is the subject of the next section.
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Chapter 7

How items are shared with anyone

As described in “How vaults are shared securely,” sharing items among members of the same
1Password account happens at the vault level But it’s also possible to securely share a copy of
individual items with individuals who are not members of the same 1Password account or even
1Password users at all. The mechanism, however, is entirely different, largely because the re-
cipient can’t be expected to authentication in the same way as a 1Password user would, and the
recipient doesn’t have a public key the sender can use.

The 1Password item sharing service allows a 1Password user to make a copy of an item available
to anyone, whether the recipient is a 1Password user or not. In this section we’ll often follow user
documentation and the user interface in calling this “sharing,” but we we’ll also write in terms of
sending and receiving to help accentuate the distinction between this mechanism and the sharing
of vaults.

7.1 Overview

There are six components to the overall picture.

1Password client The 1Pasword application with which users directly interact. This includes not
only applications such as the 1Password iOS app, but also the web client and browser extensions
acting as a client. We we’ll sometimes refer to this as “the sender’s client.”

1Password service The principle 1Password service.

Item sharing servive The share service which, among other things, will store the encrypted
shared copies.

Item sharing client The share web client. It operates in the recipient’s browser and is down-
loaded from the item sharing service. We’ll sometimes refer to this as “the recipient’s client.”

Sender The human interacting with their 1Password client.

Recipient The human interacting with the item sharing client.

Figure 7.1 illustrates which components talk to which. In particular, the 1Password client commu-
nicates only with the sending user and 1Password service. The 1Password server communicates
with the item sharing service. Item sharing client communicates only with the receiving user and
the item sharing service. And the sender will communicate directly with the recipient outside
of 1Password using a communication channel of their choice. Additionally, the figure shows the
encrypted copy of the item and key, and that their decryptions follow different paths.
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Figure 7.1: Item sharing, key, and token flow. The solid purple arrows show the flow of the encrypted
item, solid red arrows show the flow of the encryption key, and dashed green arrows show the flow to the
retrieval token. “IS Server” and “IS Client” refer to the item sharing server and client. Item encryption and
decryption can only occur where the key and the item are together, which is at the clients. The share token
is used for authenticating a download of the encrypted item by the item sharing server.The 1Password and
item sharing servers never have access to the share key. This figure doesn’t include flow of audit and share
status information.

7.2 1Password client
The sender’s client needs to do two things: create a share link and upload an encrypted copy of
the shared item to the 1Password service. The sender also needs to transmit the share link to the
recipient independently of 1Password services.

7.2.1 Making a share link
The share link looks something like what is shown in Figure 7.2.

Figure 7.2: A share link is a URL that contains in its fragment information required to identify the shared
item, along with the key necessary to decrypt it.

At a high level creating the share link involves five steps performed by the sender’s client.

1. Obtain the user item to be shared and decrypt it. The item must be something the sender
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can read and decrypt, and the sender must also have other appropriate permissions for the
vault.

2. Create a public unique identifier, a retrieval token, and an encryption key for this share.

3. Encrypt a copy of the item with the share key.

4. Upload the encrypted data to the share service along with the identifier and sender chosen
access options.

5. Present the sender with the share link.

As always, the key generation, encryption, and creation of the share link are performed entirely
on the sender’s client. The 1Password service never has access to the decryption keys nor the
decrypted item.

7.2.2 Client’s first steps
The requirements of step 1 involve a number of mechanisms. The requirement that the sender be
able to decrypt the item is cryptographically enforced, as they would never be able to re-encrypt
anything they cannot decrypt. Additionally, the client will only present the user the option to share
if the sender has the appropriate vault permission (detailed in the description of the upload step).

Figure 7.3: 1Password client gets information from sender

The sender is presented with certain configuration options including whether recipients need to
demonstrate control of certain email addresses, the required email addresses if any, the amount of
time the shared item should be available, and how many times the recipient can retrieve the item.
These options will play a role in the retrieval process. The client will check whether the options
are consistent with account policy at this time.
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7.2.3 Encryption and key generation

In step 2, the client generates 32 random bytes to be the share secret. The 32-byte encryption
key, the 16-byte public Universally Unique Identifier (UUID), and the 16-byte retrieval token are
derived from the share secret using hash-based key derivation function (HKDF) as detailed in
Figure 7.4.

Figure 7.4: Creating shared IDs and secrets. The client generates a share secret, from which it derives an
encryption key, a public UUID, and a retrieval token.

The first part of step 3 involves making a copy of the item to be shared. The copy is identical to
the one remaining in the vault except that attachments and password history are removed. The
existence of attachments and password history in an item may not always be salient to the sender,
and so those are excluded from the copy. The copy is then encrypted using the identical methods
used for encrypting items in vaults.

7.2.4 Uploading the share

In step 4, the client uploads the encrypted item along with the public Universally Unique Identifier
(UUID) and the retrieval token to the 1Password service. The service will reject the request unless
sending items is allowed by account policy; the recipient specification is consistent with account
policy; and the sender has read, reveal password, and send item permissions for the vault contain-
ing the original item. The share secret, which contains the the share key, is never passed to the
service. Additionally, the UUID of the vault and specific item are uploaded, along with the version
number of the vault. This metadata allows the user and vault administrators to manage shares.
Account policies can specify whether share retrievals must be tied to recipient email addresses
and whether those are limited to specific email domains.

The configuration options selected by the sender are also part of this upload. The server will
check whether they’re consistent with account policy (whether retrieval is restricted to people with
particular email addresses) and whether the email addresses conform to that policy. Additionally,
the server will ensure the availability time requested by the client doesn’t exceed server or account
policy. Upon success, the server responds with the non-fragment part of the share link. In current
configurations, this is https://share.1password.com/s.

After a successful upload, the client will present the user with the share link (step 5).
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Figure 7.5: 1Password client presents item sharing share link.

The client appends the share secret (base64 encoded) as a fragment to the URL returned by the
server. The fragment in the share link contains the share secret from which the retrieval token
and encryption key are derived, and therefore must not be transmitted to intended recipients via
the 1Password service.

Dangerous bend
The share link places the identifier and the decryption keywithin a URL fragment. In general
fragments are never transmitted and are used solely by the clients as additional information
on handling the retrieved resource. By putting the share secret in the fragment, we not only
prevent ways in which the secret could be exposed, but we also make it clear this is a purely
local secret.

Discussion 1: Fragment abuse?
At a superficial level, it may appear that placing the item identifier within a fragment is a
minor abuse of the standards defining URLs. The non-fragment part of a URL is supposed to
fully identify the resource to be retrieved, while that portion of our share links only identifies
the 1Password share service. Fragments, however, are also intended to provide information
to the client about handling or further processing the retrieved resource, and this is exactly
how we use the fragment. Thus our fragment, even with its inclusion of a resource identifier,
may be closer to the spirit of the standards than would be including it within the path or a
query string. In any event, we don’t anticipate the IETF to send an enforcement squad to
our door for our use of fragments.
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7.2.5 Sharing the share link
The sender needs to communicate the share link to the recipient, and this has to happen out of
band. That is, the unencrypted share link – with its secrets – must never be made available to
either the 1Password or item sharing services. This ensures the servers never have access to both
encrypted user data and the keys needed to decrypt them.

This leaves it to the sender to choose how to get the share link to the intended recipients. The
1Password client may provide as a convenience a way to launch a variety of sharing mechanisms,
such as email or messaging tool, on the sender’s system.

7.3 Server to server
The 1Password service is responsible for passing the share to the item sharing service. The 1Pass-
word service communicates with the item sharing service using our inter-service communication
architecture;9 the item sharing service is hosted at share.1password.com and is a separate service
despite being in a subdomain of 1password.com.

Dangerous bend
The item sharing server itself is hosted in the European Union, despite the .com top-level
domain. This same EU-based service is used by all 1Password servers, including those in
the United States and Canada. This way, recipient email addresses – as they are passed
from 1Password server to item sharing server – never leave the European Union.

The 1Passsword server passes to the item sharing service what it received from the sender’s client,
along with information about the authentication user and account, it adds its own timestamp, and
the number of seconds the item is to be available to the current time to create an expiry time.

7.3.1 Audit and status queries
The 1Passsword server has the ability to query the item sharing service about the state of existing
shares. The queries identify items by their account, vault, and item Universally Unique Identifier
(UUID). As discussed in far too much detail in Discussion 2, UUIDs are never expected to be
secret, so guaranteeing the requests are authorized cannot depend on knowledge of those UUIDs.
To ensure only authorized individuals are able to see the status or audit events regarding a share:

• These queries are performed over the same mutually authenticated channel (not yet docu-
mented).

• The 1Passsword server ensures the account identifier in the query is honest.

• The 1Passsword server has the responsibility to ensure the authenticated user creating the
request is authorized to make such requests for that account.

7.4 Share pickup
When the recipient follows a share link, their browser will fetch the page at https://share.1password.com/s.
The browser won’t transmit the fragment containing the share secret. The page contains a item
sharing web client, software that will run within the user’s browser on their own device. The item
sharing client running within the user’s browser is, however, able to see and make use of the
fragment portion of the share link, and thus will have the share secret.

9As yet undocumented, but it involves mutual authentication independent of TLS.
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The client uses the share secret as detailed in Figure 7.4 to derive three things:

Share key The share key is the symmetric key that was used to encrypt the item and is necessary
to decrypt it. This key is never made available to any 1Passsword service.

Share token The share retrieval token is a secret that is shared between the user and the share
service.

Share UUID The share Universally Unique Identifier (UUID) is a non-secret record locator used
by the share service to locate the item in its data store.

The item sharing client will send a request to the share service requesting the share by UUID. The
share token is passed to the item sharing server in an HTTP header OP-Share-Token, as is the norm
for bearer tokens. Neither the share secret nor the share key are ever sent to the service.

Discussion 2: Knowledge of identifiers should never prove anything
There’s some duplication between the UUID and the share token. The share token is suf-
ficient to uniquely identify the share, and knowledge of the UUID offers the same proof of
receipt of the share link as knowledge of the share token does. The fact that we don’t com-
bine both of those functions into a single value provides an opportunity to explain a design
principle throughout 1Passsword.
In the United States, Social Security Numbers (SSNs) were never designed to be secrets
they were unique identifiers. But in the second half of the 20th century, banks offering
services by telephone began to take knowledge of a caller’s SSN as proof of identity. Most
systems continued to treat SSNs as non-secrets for a very long time, and changing those
systems has proved to be enormously difficult. Credit card numbers followed a similar story
with the advent of telephone shopping.
Co-opting knowledge of account or personal identifiers for authenticationmust have seemed
like an easy strategy at the time. We’re still plagued with the consequences half a century
later.
Throughout the design of 1Passsword we have insisted that knowledge of a UUID must
never be used as an authentication mechanism. This not only gives us the freedom to design
protocols in which UUIDs never have to be kept secret, it also means we don’t have to worry
about future uses. At the moment, share tokens and share UUIDs pass through the same
hands and over the same channels, but there may be a time when we use or log UUIDs
in ways that would be inappropriate for share tokens or require new security properties
of share tokens. By holding ourselves to our design pattern now, we prevent a substantial
category of security bug in the future.

The item sharing service will first check the validity and existence of the Universally Unique Iden-
tifier (UUID). A malformed or unknown UUID will result in an error response to the item sharing
client. If the UUID is valid, it then compares10 the share token with what it has stored. If no
further authentication is required, it returns the encrypted item to the item sharing client, which
can then use the share key to decrypt the item and render it for the recipient.

The item sharing server creates and stores an audit event record for a successful access. The audit
record includes identifiers for the share and the accessor as well as the IP address and HTTP user
agent of the and item sharing client. For business accounts, audit events are available to the
mangers of the account from which the item was sent.

7.4.1 Additional authentication
In all cases, the item sharing client needs to provide the server with the share token and will
need have the share key to be able to decrypt the share, but there may be additional authenti-
10All comparisons of secrets, including this one, are performed using constant time comparison methods.
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cation requirements. At the present time, additional authentication is based on control of email
addresses.

Figure 7.6: Item sharing client item view.

In the case that email authentication is required, the share recipient (or their client) needs to
either prove they can read email sent to the specified email address or prove it has previously
offered such proof. In the first case, the share recipient is offered to have a verification email sent
to the address associated with the share by the sender. The email will contain a randomly chosen
six-digit verifier the user can enter into the item sharing client, which will send the item to the
item sharing server.

After successful email verification, the server will issue an accessor token to the client, which the
client will write to its local storage. For future share retrievals, the client can provide this access
token to show that it has previously succeeded with email verification.

7.4.2 Client analytics
The item sharing client may offer its user buttons for signing up for 1Password, saving the item in
1Password, or accepting an invite to join the team from which the item was sent. Clicking those
buttons will trigger a request to the item sharing server which is used to keep count of such clicks.
Only overall and aggregate counts of the triggering events are saved server side.

7.5 Caveats
The item sharing service is intended to share copies of items with individuals who are not members
of the 1Passsword family or team inwhich the original item resides. Within team or family accounts,
sharing offers security properties which sharing via item sharing cannot.

27



CHAPTER 7. HOW ITEMS ARE SHARED WITH ANYONE

Within an account, a relationship can be established between the personal key set of the members
of accounts. But when sharing outside of an account, there’s no preestablished relationship that
can be used to identify the sender or the recipient. For this reason, item sharing senders and
recipients need to take more care to verify independently that the other party is who they say they
are.

When the recipient is given a share link through some channel, 1Passsword can’t tell themwhether
the person sending the share link is the person who created the share link. Similarly, email au-
thentication only proves the recipient had the ability to read an email message sent to that address
at some time. Without the shared item remaining a single item shared within an account, there’s
far less ability to manage, control, or monitor use of that item as there would be within a team.

The identification of the item shared is entirely under the control of the sending client and can’t
be enforced by the 1Passsword server. A sender can evade the policy controls about which items
they are allowed to send in much the same way a user can evade other client enforced permissions,
such as having the ability to reveal a password. Thus a malicious user with the skills to modify
their own client can share any item they’re capable of decrypting by telling the 1Passsword server
that some other permissible item was shared.

In practice, the channels over which the share link is transmitted lack the ideal security properties
but they may well be sufficient for the needs at the time. Item sharing is safer and more convenient
than the practical alternatives available to most users. In particular sharing with item sharing
offers the ability to:

• Set an expiry time on the share.

• Limit the number of times it can be retrieved from the 1Passsword server

• Restrict retrieval to holders of a specific email address.

• Track what has been shared.

• Have policies stating what’s allowed to be shared.

These abilities create a substantial security improvement against the practice of simply sharing
unencrypted data over the same channels one would use for sending the share link.

We offer the item sharing service because it’s enormously more secure than other ways people
find to share 1Passsword items outside their family or team. After all, any 1Passsword user in a
position to decrypt an item already has the ability to make a copy of its data and transmit that
in any form of their choosing. Item sharing can’t prevent insecure sharing, but it makes it easier
for people and organizations to share copies of secrets in a more secure manner than they may
otherwise.
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Chapter 8

A deeper look at keys

It doesn’t matter how strong an encryption algorithm is if the keys used to encrypt the data are
available to an attacker or easily guessed. This section describes not only the details of the en-
cryption algorithms and protocols used, it also covers how and where keys are derived, generated,
and handled.

Here we provide details of how we achieve what is described in “How vault items are secured” and
“How vaults are shared securely.” It’s one thing to assert (like we have) that our design means
we never learn your secrets, but it’s another to show how this is the case. As a consequence, this
section will be substantially more technical than others.

8.1 Key creation

All keys are generated by the client using Cryptographically Secure Pseudo-Random Number Gen-
erator (CSPRNG). These keys are ultimately encrypted with keys derived from user secrets. Nei-
ther user secrets nor unencrypted keys are ever transmitted.

Table 8.1: Random number generators used within 1Password by platform. The Browser platform refers to
both the web client and to the 1Password X browser extension. “CLI” refers to the command line interface,
op.

Platform Method Library

iOS/macOS SecRandomCopyBytes() iOS/OS X Security
Windows CryptGenRandom() Cryptography API: NG
Browser getRandomValues() WebCrypto
Android SecureRandom() java.security
CLI crypto/rand Go standard crypto library

Dangerous bend
The public/private key pairs are generated using WebCrypto’s crypto.generateKey as an
RSA-OAEP padded RSA key, with a modulus length of 2048 bits and a public exponent of
65537.

Dangerous bend
The secret part of the Secret Key is generated by the client as we would generate a random
password. Our password generation scheme takes care to ensure each possible character
is chosen independently and with probability equal to any other. Secret Key characters are
drawn from the character set {2-9, A-H, J-N, P-T, V-Z}.
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Dangerous bend
An Elliptic Curve Digital Signature Algorithm (ECDSA) key is also created at this time. It’s
not used in the current version of 1Password, but its future use is anticipated. The key is
generated on curve P-256.

8.2 Key derivation
For expository purposes, it’s easiest to work backwards. The first section will discuss what a typical
login looks like from an already enrolled user using an already enrolled client, as this involves the
simplest instance of the protocol.

8.2.1 Deriving two keys from two secrets

Figure 8.1: The AUK is derived from the account password, 𝑝; Secret Key, k𝐴, and several non- secrets
including the account ID, 𝐼, and a salt, 𝑠.

As discussed in “Account password and Secret Key,” 1Password uses two-secret key derivation
(2SKD) so data we store cannot be used in brute-force cracking attempts against a user’s account
password. The two secrets held by the user are their account password and Secret Key.

From those two user secrets the client needs to derive two independent keys. One is the key
needed to decrypt their data, the other is the key needed for authentication. We’ll call the key
needed to decrypt the data encryption keys (and, in particular, the user’s private key) the Account
Unlock Key (AUK), and the key that’s used as the secret for authentication SRP-𝑥.
The processes for deriving each of these are similar, but involve different salt in the key derivation
function. A user will have a salt used for deriving the Account Unlock Key (AUK) and a different
salt used for deriving SRP-𝑥.
In both cases, the secret inputs to the key derivation process are the user’s account password and
Secret Key. Non-secret inputs include salt, algorithm information, and the user’s email address.

8.2.2 Preprocessing the account password
Before the user’s account password is handed off to the slow hashing mechanism, it undergoes a
number of preparatory steps. The details and rationale for those are described here.

account password are first stripped of any leading or trailing whitespace (Step 3, Figure 8.1).
Whitespace is allowed within the account password, but because leading or trailing whitespace
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may not be visible to the user, we want to avoid creating an account password with spaces they’re
unaware of. Then it’s normalized (Step 4) to a UTF-8 byte string using Unicode Normalization Form
Compatibility Decomposition (NFKD). By normalizing these strings before any further processing,
we allow for different byte sequences that may encode the same Unicode character to be treated
identically. This is discussed in greater depth in Discussion 9.1.

Discussion 9.1: Non-ASCII passwords
People naturally want to use passwords that involve characters other than the 7-bit US-
ASCII printable characters. Yet doing so poses difficulties that simply supporting Unicode
doesn’t answer. Unicode normalization goes a long way toward addressing these difficulties.
The need for Unicode normalization can be exemplified by considering how the glyph “Å”
may be encoded when it’s typed on some devices. It can be encoded in (at least) three
different ways: It might be the byte sequence 0x212B, or 0x00C5, or 0x0041030A. Exactly
how it’s encoded and passed to 1Password (or any software) depends on the often arbitrary
details of the user’s keyboard, operating system, and settings. 1Password itself has no
control over what particular sequence of bytes it will receive, but the user who uses “Å” in
their password needs it to work reliably.
Normalization ensures that whichever particular UTF encoding of a string is passed to 1Pass-
word by the user’s operating system will be treated as identical. In the case of “Å”, the
normalization we have chosen (NFKD), will convert any of those three representations to
0x0041030A.

Dangerous bend
Normalization does not correct for homoglyphs. For example, the letter “a” (the second
letter in “password”) in the Latin alphabet will never be treated the same as the visually
similar letter “а” (the second letter in “пароль”) in the Cyrillic alphabet. Thus, despite
our use of normalization, users still have to exercise care in the construction of account
passwords that go beyond the unambiguous 7-bit US-ASCII character set.

8.2.3 Preparing the salt

Next, the 16-byte salt is stretched using hash-based key derivation function (HKDF) and salted with
the lowercase version of the email address (Step 5).11 The reason for binding the email address
tightly with the cryptographic keys is discussed in “Restoring a user’s access to a vault.”

8.2.4 Slow hashing

The normalized account password is then processed with the slow hash PBKDF2-HMAC-SHA256
along with a salt.

11HKDF places no security requirements on its salt, which may even be a constant or zero.
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Dangerous bend
The choice of PBKDF2-HMAC-SHA256 as our slow hash is largely a function of there being
(reasonably) efficient implementations available for all our clients. While we could have
used a more modern password hashing scheme, any advantage of doing so would have
been lost by how slowly it would run within JavaScript in most web browsers.
Because key derivation is performed by the client (so the server never needs to see the
password) we are constrained in our choices by our least efficient client. The Makwa pass-
word hashing scheme a, however, is a possible road forward because it allows some of the
computation to be passed to a server

a@pornin:MAKWA

In the current version, there are 650,000 iterations of PBKDF2.12 Extrapolating from a cracking
challenge we ran,13 we estimate it costs an optimized attacker working at scale between 30 and
~40 US dollars to make 232 guesses against PBKDF2-SHA256 with 650,000 iterations.

8.2.5 Combining with the Secret Key

Figure 8.2: The AUK is represented as a JSON Web Key (JWK) object and given the distinguished key ID of
mp.

The Secret Key, treated as a sequence of bytes, is used to generate an intermediate key of the same
length as that derived from the account password. This is done using hash-based key derivation
function (HKDF), using the raw Secret Key as its entropy source, the account ID as its salt, and
the format version as additional data.

The resulting bytes from the use of HKDF are XORed with the result of the PBKDF2 operations.
This is then set with the structure of a JSON Web Key (JWK) object as illustrated in Figure 8.2.

8.2.6 Deriving the authentication key
The process of deriving the client-side authentication secret used for authenticating with the 1Pass-
word server is nearly identical to the procedure described above for deriving the Account Unlock
Key (AUK). The only difference is an entirely independent salt is used for the PBKDF2 rounds. This
ensures the derived keys are independent of each other.

The 32-byte resulting key is converted into a BigNum for use with Secure Remote Password (SRP).
We use the JSBN library in the browser, and the tools from OpenSSL for all other platforms.

The astute reader may have noticed the defender needs to perform 1,300,000 PBKDF2 rounds
while an attacker (who has managed to obtain the Secret Key) only needs to perform 650,000
12Accounts created prior to January 27, 2023 and have not changed their account password or Secret Key since this date,

will use a lower iteration count. The iteration count can be updated to the current standard value by changing either the
account password or Secret Key.
13Goldberg (2021)
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PBKDF2 rounds per guess, thus giving the attacker a 1-bit advantage over the defender in such
an attack.

The sequence described above, however, in which the defender needs to derive both keys, rarely
happens. In most instances, the SRP-𝑥 will be encrypted with the Account Unlock Key (AUK) (or
by some other key that’s encrypted with the AUK) and stored locally. Thus the defender needs to
derive the AUK only. The client needs to go through both derivations only at original sign-up or
when enrolling a new client.

8.3 Initial sign-up
To focus on the initial creation of keys and establishment of authentication mechanisms, this sec-
tion assumes the enrolling user has been invited to join a team by someone authorized to invite
them.

When the invitation is created, the server generates an account ID and knows which team someone
has been invited to join and the type of account that’s being created. The server is given the
new user’s email address and possibly the new user’s real name. An invitation Universally Unique
Identifier (UUID) is created to uniquely identify the invitation, and known to the team administrator.
An invitation token is created by the server and not made available to the administrator. Other
information about the status of the invitation is stored on the server.

The user is given (typically by email) the invitation Universally Unique Identifier (UUID) along with
the invitation token, and uses them to request invitation details from the server. If the UUID is for
a valid and active invitation and the provided token matches the invitation’s token, the server will
send the invitation details, which include the account name, invited email address, and (if supplied
by the inviter) real name of the user. If the server doesn’t find a valid and active invitation for that
UUID, it returns an error.

The client will gather and compute a great deal of information, some of which is sent to the server.

Table 8.2: Symbols used to indicate status of different data client creates during signup.

Symbol Meaning

𝜉 Generated randomly
Key-like thing
Encrypted

↑ Uploaded

1. Generate Secret Key 𝜉
2. Compute AUK

1. Generate encryption key salt 𝜉 ↑
2. Derive Account Unlock Key (AUK) from encryption salt, account password, and Secret

Key as described in “Key derivation.”

3. Create encrypted account key set

1. Generate private key 𝜉
2. Compute public key (from private key) ↑
3. Encrypt private part with AUK ↑
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4. Generate key set Universally Unique Identifier (UUID) 𝜉 ↑
5. Include key set format ↑

4. User information ↑
1. Given name ↑
2. Family name ↑
3. Avatar image ↑
4. Email address ↑

5. Device information ↑
1. Generate device UUID 𝜉 ↑
2. Operating system (if available) ↑
3. User agent (if applicable) ↑
4. Hostname (if available) ↑

6. Construct Secure Remote Password (SRP) verifier

1. Generate authentication salt 𝜉 ↑
2. Derive SRP-𝑥 from account password, Secret Key, an authentication salt

3. Computer SRP verifier from SRP-𝑥 ↑
7. Send to the server everything marked ↑

8.3.1 Protecting email invitations
Invitations are sent by email, and suffer the security limitations of email. Administrators are
strongly encouraged to verify independently (by means other than email) the intended recipients
have enrolled.

8.4 Enrolling a new client
When enrolling a new device, the user will provide the client with the add-device link (possibly in
the form of a QR code) and their account password. The add-device link is generated at the user’s
request from an already enrolled client and includes the domain name for the team, the user’s
email address, and their Secret Key.

The link uses the custom schema onepassword: with a path of //team-account/add and a query string
with fields email, server, and key. An example is shown in Figure 8.3.

Figure 8.3: An add link contains the email address, team domain, and Secret Key.

This new client doesn’t have its salt nor its key derivation parameters so requests them from
the server. It’s able to generate its device information and create a device Universally Unique
Identifier (UUID).
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Figure 8.4: Example response from server to auth request. The Secret Key is often referred to as “Account
Key” internally.

The client initiates an auth request to the server, sending the email address and device Universally
Unique Identifier (UUID). A typical server response looks similar to what’s shown in Figure 8.4.

After the client has the salt used for deriving its authentication secret, it can compute its SRP-𝑥
from that salt, the account password, and the Secret Key. During authentication, neither the client
nor server reveals any secrets to the other, and after authentication is complete, our own transport
layer encryption is invoked on top of what is provided by Transport Layer Security (TLS). In the
discussion here, however, we’ll ignore those two layers of transport encryption and present the
data as seen by the client and server after both transport encryption layers have been handled.

After successful authentication, the client requests its encrypted personal key set from the server.
If the client has successfully authenticated, the server allows it to fetch the key sets associated
with the account. The personal key set has the overall structure shown in Figure 8.5.

Figure 8.5: Overview of personal key set. The value of ‘encryptedBy‘ here indicates the encrypted symmetric
key is encrypted with the Account Unlock Key.

This contains an encrypted private key, the associated public key, and an encrypted symmetric key
that’s used to encrypt the private key. The encrypted symmetric key is encrypted with the Account
Unlock Key (AUK), using the parameters and salt that are included with the encrypted symmetric
key as shown in Figure 8.6
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Figure 8.6: The encrypted symmetric key is encrypted with the AUK, which in turn is derived using the salt
in the p2s field, and using the methods indicated in the fields alg and p2c. The encrypted symmetric key itself
is encrypted using AES256-GCM.

The details of the public and private keys are illustrated in Figure 8.7.

Figure 8.7: The public/private parts are specified using JWK.

8.5 Normal unlock and sign-in
When you unlock and and sign in to 1Password from a client that has previously signed in, the
client may14 have everything it needs locally to compute its Account Unlock Key (AUK) and to
compute or decrypt SRP-𝑥. The client may already have the salt, encryption parameters, and its
encrypted personal key set.

After the user enters a correct account password and the client reads the Secret Key, it computes
the Account Unlock Key (AUK), decrypts the user’s private key, then decrypts any locally cached
data. Depending on the completeness of the cached data, the client may be able to function offline.

14The use of the word “may” here reflects the fact that different 1Password clients take different approaches to what they
store locally and what they recompute. The current version of the web client, for example, caches much less data locally
than the mobile clients do.
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Chapter 9

Unlock with a passkey or single
sign-on

As an alternative to the sign-in method described in chapter “A deeper look at keys,” it’s also
possible to sign in to 1Password with a passkey or single sign-on (SSO) provider.

Anyone can create an account that uses a passkey for authentication. When you set up an account
this way, you provide your account’s passkey to unlock 1Password instead of an account password
and Secret Key.

Companies that use 1Password can configure unlock with single sign-on (SSO) for groups in their
organization. When a user signs in with SSO, they sign in with the username, password, and other
authentication factors required by their SSO provider instead of using their account password and
Secret Key to authenticate to 1Password. 1Password accepts proof of authorization from the SSO
provider as authentication.

9.1 Unlocking without an account password

We designed passkey and single sign-on (SSO) unlock to work similarly to signing in with an ac-
count password and Secret Key in that both methods set up a process that uses Secure Remote
Password (SRP) in a similar way. On devices where a user signs in with a passkey or SSO, 1Pass-
word clients store a device key. Each device key is uniquely and randomly generated, and never
leaves the device on which it was created. To enroll a new device on a passkey or SSO-enabled ac-
count, the user must authentication first then authorize the new device using a previously enrolled
device.

Device key
A cryptographic key stored on a 1Password client that’s using single sign-on (SSO). It’s used
to decrypt the credential bundle it receives from the server upon successful sign in.

With passkey and single sign-on (SSO) unlock, your first device randomly generates an SRP-𝑥 and
Account Unlock Key (AUK). They’re stored on our servers, encrypted by the device key that’s only
stored on the device that created it. This combination of the SRP-𝑥 and AUK is called a credential
bundle.

Credential bundle
Consists of a randomly generated SRP-𝑥 and AUK, it’s used to sign in to 1Password with
single sign-on (SSO). It’s encrypted by the device key and stored on 1Password servers.
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Figure 9.1: Passkey sign in. The solid purple arrows illustrate the authorization of a device when a user
performs a passkey sign-in, green arrows illustrate the return of the credential Bundle to the user, and dashed
golden arrows illustrate the user’s authentication with SRP to use 1Password.
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Figure 9.2: Single sign-on sign in. The solid purple arrows indicate a user signing in to their SSO provider.
The solid red arrow shows the authorization the SSO provider sends to the 1Password server. The green
arrows show the credential bundle being returned to the user. The dashed golden arrows show the user
authenticating with SRP to use 1Password. This diagram is based on the OpenID Connect SSO authorization
flow. For some SSO providers, the destinations of certain arrows may be slightly different.

9.1.1 Authorization and the credential bundle
Authorization to obtain the credential bundle happens as follows:

• Passkey unlock The server authentication your passkey and authorizes you.

• SSO unlock During sign-in, the single sign-on (SSO) provider tells 1Password servers you’ve
successfully authorized. Typically, the SSO provider returns an authorization token to your
device, which forwards it to the 1Password server.

In return for a valid proof of authorization, our servers return a credential bundle encrypted with
the device key. After the 1Password client decrypts the SRP-𝑥 and Account Unlock Key (AUK) with
the device key, it authenticates as described in “A deeper look at keys.” After successful sign-in
with a passkey or an SSO provider, 1Password behaves identically to when an account password
and Secret Key are used.

9.2 Linked apps and browsers

After you’ve successfully enrolled with a passkey or single sign-on (SSO), the app or browser you
use is linked. The device you use stores a device key and sets up a unique credential bundle.
The first client used to signed in to 1Password – either for the first time or after a user has been
restored – is a linked app (or browser) by default.
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Linked app or browser
A client trusted to use SSO, by having set up a device key and created a corresponding
credential bundle.

The first app or browser you use to sign in creates a new set of randomly generated values that
form the credential bundle. Any additional apps or browsers you enroll need approval. They’re
approved by successfully authenticating to the single sign-on (SSO) provider, consenting to the
sign-in with an existing linked app, and providing a code that’s randomly generated by the linked
device.

When you approve a sign-in within your linked app or browser, it sends a copy of the credential
bundle to the new device via an end-to-end (E2E) encrypted channel. The new app protects the
credential bundle with its own unique device key. The device key is critical for the overall security
of single sign-on (SSO). Appendix A has more information about device key security and storage.

9.3 Linking other devices

When you set up a new app or browser, the credential bundle the device uses is obtained from a
previously linked app or browser. For your existing device to send the credential bundle to your
new device, a trusted channel is set up between the two devices. For reliability, that channel is
facilitated by 1Password servers and set up in such a way that 1Password can’t see what the two
devices are sending each other.

The trusted channel between two devices uses the CPace cryptographic protocol. With CPace, two
devices with knowledge of a six-character code can authentication to one another and agree on a
shared encryption key. That encryption key is used to encrypt the credential bundle when it’s sent
from a linked device to a new device which makes the contents impossible to decrypt for anyone
observing the encrypted messages. In the event a malicious server attempts to interfere in the
key agreement process, 1Password clients detect the presence and abandon participation.

CPace
A modern PAKE using a shared secret, defined by Abdalla, Haase, and Hesse (CPace, a
balanced composable PAKE.)a

a@DraftCpaceRFCv07

With these building blocks, the process shown in Figure 9.3 and annotated below describes how a
credential bundle safely travels between two devices.
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Figure 9.3: An overview of the protocol by which a linked app or browser is added, showing the communi-
cation between the linked client, new device, and 1Password server. Any SSO providers that perform initial
sign-in are not depicted.

Line 1: The parties involved are a new device, the server, and a linked app or browser. Your single
sign-on (SSO) provider, if applicable, also plays a small role initially but they’re omitted from the
figure for simplicity.

Line 2: You sign in to 1Password with a passkey or SSO.

Line 3: The 1Password server sends a notification to all existing linked apps and browsers. They’ll
notify you that a new device wants to be set up and you need to approve the connection on the
existing device. If you choose to continue, you’ll have to sign in on the existing device unless you
already have an active session.

Lines 4-7: Your existing device initiates a trusted channel with the new device using CPace. The
existing device then generates a 6-character setup code, uses it to create a CPace handshake ℎ𝑠,
and sends the handshake to the 1Password server.

Lines 7-10: Your new device fetches the CPace handshake and asks you to enter your setup code.
After you enter the setup code, your device computes a CPace reply 𝑟 from information in both the
CPace handshake and the setup code, then sends it to the 1Password server.

Both devices use the shared values to compute a shared session key 𝑘𝑠.

Lines 11-13: Before the keys are used, it’s important to verify the keys have been exchanged
correctly. After all, you may have accidentally entered the wrong setup code or there may have
been something nefarious that tried to influence the messages sent between your devices.

To verify the keys, both devices compute an HMAC digest of the message they received from the
other device using the key they both derived. They send these verification values to one another
and verify whether the value computed by the other matches their own. If the values don’t match
on either device they break off the setup process and start over again.
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Lines 13-18: Your linked app or browser encrypts the credential bundle with (a derivative of) the
session key established previously and sends them to your new device via the 1Password server.
Your new device derives the decryption key the same way and decrypts the credential bundle.
Next, the device generates a random device key, stores it, then encrypts the credential bundle
with the device key. Your device stores the newly encrypted credential bundle on the 1Password
server and completes the process to become a linked app or browser.

9.4 Quick on-device access with biometrics
The process described in Figure 9.2 requires that your device be online when unlocked. It’s possi-
ble for certain devices to get access to vault contents while offline if the user’s business account
is configured to allow it. Offline access to vault contents is provided when a user successfully per-
forms a biometric authentication. This is supported on Windows, Linux, macOS, iOS and Android
using their respective platform’s biometric authentication.

When you unlock with biometrics, the credential bundle is used to decrypt vault contents locally so
it can be accessed offline. Clients also keep track of a reauthentication token. This token is used to
perform reauthentication with the 1Password server within a limited timeframe, without the client
performing passkey unlock or reaching out to the SSO server. When an account administrator
turns on biometric unlock, they temporarily delegate the responsibility of authenticating you to
your device instead of your identity provider.

A reauthentication token is requested when you use biometrics to unlock your passkey or single
sign-on (SSO)-enabled 1Password account. It’s guarded by the protections described in “Transport
security” when it’s transferred from the 1Password server to your device.

On macOS, iOS and Android devices, quick biometric unlock is protected by the respective plat-
form’s built-in secure elements. On Windows and Linux, the reauthentication token is stored in
protected operating system memory while the 1Password app is running either when locked or un-
locked. On the platforms that store the reauthentication token in memory, the token is lost when
the app closes or restarts, so you need to sign in to 1Password again.
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Revoking access
When Alice tells Bob a secret and later regrets doing so, she can’t make Bob forget the secret
without resorting to brain surgery. We feel brain surgery is beyond the scope of 1Password,15 and
therefore users should be aware that once a secret has been shared the recipient cannot be forced
to forget that secret.

Story 7: A week in the life of revocation
We’re always happy for our colleagues when they move on to new adventures.
Tom and Gerry have been working on Widgets For Cows, Barnyard Gadgets’ new Internet
of Things products, and it’s time for Tom to move on. Tom will get access to a new team and
new shared vault.
Ricky, the team owner, adds Tom to the new vault. Adding a new member to a shared vault
is very simple. A copy of the vault key will be encrypted with Tom’s public key so only Tom
can decrypt it, and Tom will be sent a notification about the new shared vault. But what
about his old access and Gerry’s new product plans for Widgets for Cows?
Ricky will remove Tom from the Widgets for Cows vault. Ricky can’t make Tom forget infor-
mation that he’s already had and perhaps made a copy of, but Tom can be denied access to
anything new added to the vault.
After Tom has been removed from the vault, Gerry creates a new Document called More
Cow Bell for the vault. More Cow Bell will be encrypted with a key that’s encrypted by the
vault key, but Tom should never get a copy of the encrypted Document item.
The next time Tom connects to the server, he will no longer be sent data from that vault.
This server policy mechanism prevents Tom from receiving any new data from that vault.
Furthermore, Tom’s client will be told to remove any copies of the vault key and the en-
crypted data it has stored for that vault. This client policy at least get a well behaved client
to forget data and keys it should no longer have. Either of those policies is sufficient to
prevent Tom from learning just how much cow bell Gerry thinks is enough.

15We’ve made no formal decision on whether rocket science is also beyond its scope.
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Access control enforcement

Users (and attackers) of 1Password are limited in what they can do with the data. Enabling the
right people to see, create, or manipulate data while preventing the wrong people from doing so
is the point of 1Password. The sorts of powers that an individual has are often discussed in terms
of Access Control Lists (ACLs). For want of a better term, we’ll use that language here; however,
it should be noted that the mechanisms by which these controls are enforced aren’t generally the
same as the ones for more traditional ACLs. Indeed, different controls may be enforced by different
mechanisms, even if presented to the user in the same way.

Broadly speaking, there are three kinds of control mechanisms. These are cryptographic enforce-
ment of policy, server enforcement of policy, and client enforcement of policy.

11.1 Cryptographically enforced controls

If someone hasn’t been given access to a vault, it’s impossible in all practical terms for them to
decrypt its data. So at the simplest level, if a user hasn’t been added to a vault, the mathematics
of cryptography ensure they won’t be able to decrypt it.

Because the server never has access to decrypted vault keys, it can’t give out those keys to anyone.
Therefore the server simply doesn’t have the power to grant someone access to a vault. Such
requirements are cryptographically enforced.

Among the mechanisms cryptographically enforced:

• Unlocking a vault.

• Only those with access to a vault can share it.

• User email address can be changed only by the user.

• Server doesn’t learn user’s Secret Key or account password.

11.2 Server-enforced controls

Cryptography doesn’t prevent a user (or their client) with access to the vault key from adding,
deleting, or modifying items in that vault when the information resides locally on their device. The
same key they use to decrypt the data could be used to encrypt modified data.

But 1Password offers the ability to grant individuals read permission to a vault while denying them
write permission. The server will reject any attempt from a read-only user of a vault to upload data
to that vault. This, and other features, are enforced by server policy. An example of one of these
in action is presented in Story 8.
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Story 8: A day in the life of read-only data
Patty (a clever and sneaky dog) has been granted access to a vault called “Locations” that
contains the locations of the water dish and the dog door. So has another member of the
team, Morgan le Chien.
Patty thinks she will have the place to herself if Morgan can’t manage to settle in. So she’d
like to give Morgan misleading information. Although Patty has been granted only read
access to the Locations vault, she is a remarkably clever dog and extracts the vault key
from her own data. The same vault key that decrypts items is also used to encrypt items.
She modifies the location of the water bowl (listing the driest part of the house) and encrypts
her modified data with the vault key. Then she tries to send this modified data to the server
so Morgan will get that information instead.
But she finds that server policy prevents her from uploading modified data. Although
cryptographically she had the ability to modify the data, she could only do so on her system.
Her evil plan was foiled by server policy.
Of course, her plan would have failed anyway. Morgan is happy to drink from anything
resembling a water receptacle, and can manage remarkably well even if she doesn’t know
the location of the water bowl.

11.3 Client-enforced controls

Client-enforced controls are limitations enforced within either the web browser or a native client,
such as an iOS application. Because the web browser or native client is running on a user’s system
and outside our control, these policies may be circumvented by a malicious client or determined
user. This doesn’t reduce their usefulness to ordinary users and may help prevent unintended
disclosures or accidental actions.

See Story 9 for an illustration of what client-enforced policies can and can’t do.

11.3.1 Controls enforced by client policy
Each of the client policies requires a server or cryptographically enforced policy be granted in
order to be allowed. For example, the Import permission may be circumvented by a client, but the
user will be unable to save the newly imported item to the server because the Write permission is
enforced by the server, not the client.

• Importing items into a vault. A user may still create multiple items manually provided they
have permission to create new items in the vault. This permission may be used to restrict
how many items a user may easily create or prevent accidentally importing items.

• Exporting items from a vault. A user may still obtain the item data by other means and
create files that aren’t controlled by 1Password. This permission may be used to prevent
accidentally disclosing the contents of an entire vault.

• Revealing a password for an item. A user may still obtain the password by examining a
web page using the developers’ tools for their web browser. This permission may be used
to prevent accidental disclosure and may help reduce the risk of shoulder surfing and other
social engineering attacks.

• Printing one or more items. A user may still obtain the item data by other means; create
files that are not controlled by 1Password and print out those files. This permission may be
used to prevent accidentally disclosing the contents of an entire vault.
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11.4 Multiple layers of enforcement
Something enforced by cryptography may also be enforced by the server, and something enforced
by the server may also be enforced by the client. For example, the server won’t provide the vault
data to non-members of a vault, even though non-members wouldn’t be able to decrypt the data
even if it were provided. Likewise, a 1Password client will generally not ask for data the server
would refuse to supply. Throughout this document, we’ll typically mention the deepest layer of
enforcement only.

Story 9: A day in the life of a concealed password
The administrators have come to be wary of how the dog Patty (see Story 8 for background)
treats data. They want Patty to have access to the password for the dog door (they want her
to be able to leave and enter as she pleases), but they don’t want Patty to give the password
to any of her friends should her paws accidentally press the Reveal button.
So the administrators limit Patty’s ability to reveal the password. She can fill it into the
website that controls the dog door (she lives in a somewhat unusual household), but she
can’t accidentally press 1Password’s Reveal button while her friends are watching. This is
protected by client policy.
But Patty is a clever dog. After she uses 1Password to fill on the website, she uses her
browser’s debugging tools to inspect what 1Password has inserted. She gets the password,
and tells all her friends so they can come and visit.
The house is suddenly full of Patty’s friends running wild, and the administrators have
learned an important lesson: Client policy controls are easily evaded.

46



Chapter 12

Restoring a user’s access to a vault
If Albert forgets or loses their Secret Key or account password, it’s impossible to decrypt the con-
tents of their vaults unless those vaults have been shared with someone else who hasn’t forgotten
or lost the Secret Key or account password. Our use of two-secret key derivation (2SKD) increases
the risk to data availability because, in addition to the possibility of a user forgetting their account
password, there’s also the possibility the Secret Key gets lost. Data loss can be catastrophic to a
team, so some recovery mechanism is necessary.

Our security design also requires that we at 1Password never have the ability to decrypt your
data, so we don’t have the ability to restore anyone else’s ability to decrypt their data if they have
forgotten their account password or lost their Secret Key. Our solution is to place the power to
recover access to vaults where it belongs: within the team.

12.1 Overview of groups
To understand how the Recovery Group works, it’s first necessary to understand how a group
works. A group will have a key set that’s similar in nature to an individual’s key set. It’s an
encrypted public/private key pair. A vault is held by a group if the vault key is encrypted with the
group’s public key.

Dangerous bend
An individual (or another group) is a member of the group if the group’s private key can
be decrypted by that individual. To put it simplya 𝐴 is a member of group 𝐺 if and only if
𝐺’s private key is encrypted with 𝐴’s public key. 𝐴 can decrypt anything encrypted with
her public key because she can decrypt her private key. Thus, 𝐴 will be able to decrypt the
private key of𝐺. With𝐺’sprivate key, she can decrypt the vault keys that are encrypted with
𝐺’s public key. But if 𝐴 hasn’t been granted access to a vault, she’ll be prevented by server
policy from obtaining the vault data even though she has the key to that vault. Simple.

aFor some values of the word “simply.”

12.2 Recovery groups
One of the most powerful capabilities a team administrator has is the power to assign members
to the team’s Recovery Group. In most configurations the assignment is automatic and Owners,
Organizers, and Administrators will automatically be made members of the group. In 1Password
Families there’s no ability to separate the roles of Owner, Administrator, and Recovery Group
member; they’re all wrapped up as “Organizer.” With 1Password Teams, Administrators are given
more control, but not all the underlying flexibility may be exposed to the user.16 This document
describes recovery in terms of the Recovery Group even when the group is not exposed to the
Team administrator in those terms.
16We discovered during our beta testing that it was difficult to make the distinction between Owners, Administrators,

vault Managers, and Recovery Group members clear enough for those distinctions to be sufficiently useful.
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12.3 Implicit sharing

When a vault is created, a copy of the vault key is encrypted with the public key of the recovery
group. The members of the Recovery Group can decrypt the private key of the recovery group.
Thus from an exclusively cryptographic point of view, the members of the Recovery Group have
access to all the vaults.17

Recovery Group member never have the ability to learn anyone’s account password, Secret Key,
Account Unlock Key (AUK), or SRP-𝑥. Recovery is recovery of the vault keys — it’s not recovery
of the account password or Secret Key.

12.4 Protecting vaults from recovery group members

Although there’s a chain of keys and data that would allow any member of the Recovery Group to
decrypt the contents of any vault, there are mechanisms that prevent it.

• A member of the Recovery Group won’t be granted access to the encrypted data in a vault
they otherwise wouldn’t have access to, even if they can obtain the vault key.

• A member of a Recovery Group will only be sent the encrypted vault keys after the user
requesting recovery has re-created their account.

Thus the server prevents a member of the Recovery Group from obtaining the vault keys without
action on the part of the person seeking recovery. The capacity to decrypt the vault keys offers
the malicious member of a recovery group little benefit if those encrypted keys are never provided.
Furthermore, even if a malicious member of the recovery group can trick the server into deliver-
ing the encrypted vault keys when it shouldn’t, the attacker still needs to obtain the vault data
encrypted with that key.

12.5 Recovery risks

Recovery mechanisms are inherently weak points in maintaining the secrecy of data. Although we
have worked to design ours to defend against various attacks, there are special precautions that
should be taken when managing a Recovery Group or authorizing recovery.

• Members of a recovery group should be adept at keeping the devices they use secure and
free of malware.

• Members of the recovery group should be aware of social engineering trickery.

• Recovery requests should be verified independently of email. (Face to face or a phone call
should be used.)

• Recovery emails should be sent only if you have confidence in the security of the email system.

• If there are no members of a recovery group, the capacity to recover data is lost to the team.

171Password Teams also have a permission called Manage All Groups that has equivalent cryptographic access, which is
only given to the Administrators and Owners groups by default.
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Figure 12.1: An overview of what keys are available to whom and when to support data recovery.

Figure 12.1 provides an overview of what data and keys are held by whom. Some hopefully ir-
relevant details have been omitted to keep the diagram manageable. For example, the transport
encryption layers for the messages are entirely skipped (see “Transport security”) and where we
speak of encrypting or decrypting private keys, it’s actually encrypting or decrypting the keys that
the private parts of keys are encrypted with (see 5.1). The illustration acts as if Carol would only
ever have a single vault, though of course she may create a number of different vaults.

Line 1: Our participants are Bob, a member of the Recovery Group; Carol, a member of the same
team but not a member of the recovery group; and 𝑆, the 1Password Server.

Line 2: Bob starts with his one personal key set, (pk𝐵, sk𝐵), and with the private key, sk𝑅, of the
recovery group encrypted with Bob’s public key.

Lines 3-4: Carol creates a new vault which will be encrypted using vault key k𝑣, which her client
generates. Encrypting the items in a vault is properly described in Figure 5.1. Here we just
abbreviate it as “Enc(k, 𝑑𝑣)”.
Line 5: When Carol creates a vault a copy of its vault key, 𝑘𝑣, is encrypted using the recovery
group’s public key, pk𝑅, and sent to the server. The encrypted vault data, 𝑑𝑣𝑒, is also sent to the
server for syncing and storage.

Line 6: When Bob initiates recovery (presumably after receiving a request from Carol outside of
this system, as Carol can no longer sign in), Bob informs the server of his intent, and the server
sends instructions to Carol by email.

Not shown in this diagram is the server putting Carol’s account into a specific suspended state. If
Carol successfully signs in, the recovery is automatically cancelled.

Line 7: When Carol’s account is in a pending recovery state, she’s directed through a procedure
very similar to initial signup. The key difference being that she maintains the same name, email
address, and permissions instead of being treated as a new user by the system.

During this process, Carol generates a new personal key set, (pk𝐶, sk𝐶), and shares her new public
key, pk𝐶 with the server.

The server will inform Bob that he needs to “complete the recovery” of Carol’s account.18

18This would be a good time for Bob to confirm with Carol through some method other than email that it’s indeed Carol
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Not shown is Carol’s client generating a new Secret Key during this recovery signup. Carol will
choose a new account password, which may be identical to her previous one. And from her new
Secret Key and potentially new account password, her client will generate a new Account Unlock
Key (AUK) with which it will encrypt her new personal key set.

Line 8: After Carol has created her new key set and Bob confirms he wishes to complete recovery,
the server will send Carol’s new public key, pk𝐶 , along with the copy of the vault key that’s en-
crypted with the recovery group’s key, 𝑅𝑣. Recall that 𝑅𝑣 was sent to the server when Carol first
created the vault.

Lines 8-9: Bob can decrypt 𝑅𝑣 and re-encrypt it as 𝑥 with Carol’s new public key, pk𝐶 and send
that to the server.

The server can then pass 𝑥 back to Carol, along with the encrypted data in the vault, 𝑑𝑣𝑒.

There are several things to note about the process illustrated in Figure 12.1. Most importantly,
at no time was the server capable of decrypting anyone’s data or keys. Other security features
include the fact that Bob was not sent 𝑅𝑣 until after Carol acted on recovery. The server also
never sent Bob the data encrypted with 𝑘𝑣. The server would have canceled recovery if Carol
successfully authenticated using her old credentials, thus somewhat reducing the opportunity for
a malicious recovery without Carol noticing. Nonetheless, it remains possible that a malicious
member of a recovery group who gains control of Carol’s email could come to control Carol’s
1Password account.

12.6 Recovery keys
Recovery keys are a mechanism for allowing a user to recover their account without the need for
a member of the Recovery Group to be involved. This is particularly useful for accounts with a
single user or in the case of a family organizer, where there may not be another user available to
perform recovery using the method described above. We designed this mechanism to minimize
the risk of these keys being used to enable an attacker to take over an account, thus providing
greater safety than a user backing up their account password and Secret Key.

12.6.1 Recovery key generation
Recovery keys are generated by the client application using a Cryptographically Secure Pseudo-
Random Number Generator (CSPRNG), with a length of 32 bytes. Following generation, the recov-
ery key is encrypted using the user’s key set symmetric key, and stored on the 1Password server.
It’s stored to allow the use of the key without regeneration or redistribution should the user’s key
set be rotated, or cryptographic components upgraded, such as the password-authenticated key
exchange (PAKE) algorithm. As is the case of other secrets, such as the Secret Key, recovery keys
are never exposed to the 1Password servers in unencrypted form.

Three subkeys are then generated using a hash-based key derivation function (HKDF) with the
recovery key as the input keying material, and the following information values:

• 1P\_RECOVERY\_KEY\_AUTH\_v1: Authentication subkey – 32 bytes, used to authenticate the re-
covery key via a PAKE, to ensure the correct key is being used without exposing the key
itself.

• 1P\_RECOVERY\_KEY\_ENC\_v1: Encryption subkey – 32 bytes, used to encrypt the user’s key set
symmetric key, allowing the user to decrypt their key set and recover their account.

• 1P\_RECOVERY\_KEY\_UUID: Identifier - 16 bytes, used to identify the recovery key. This is a non-
secret value, used by the server to identify the correct recovery key to use when multiple keys
are available.

who has reestablished her account.
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The hash-based key derivation function (HKDF) is used to ensure the subkeys are independent
of each other, and recovery key is not exposed. Using the encryption subkey, the user’s key set
symmetric key is encrypted by the client application, and uploaded to the 1Password server. In ad-
dition, the client application uses Secure Remote Password (SRP), with the authentication subkey
as the SRP-𝑥, to derive a SRP-𝑣, which is then uploaded to the server and used to authentication
the recovery key to the server.

12.6.2 Recovery key authentication
When a user wants to recover their account, they must complete the following steps:

1. The client application will derive the identifier subkey from the recovery key, supplying it to
the server.

2. The server will return the cryptography version number of the recovery key, and any
password-authenticated key exchange (PAKE) parameters required to authenticate the
recovery key.

3. The client application will derive the encryption and authentication subkeys from the recov-
ery key, and use the authentication subkey to authenticate the recovery key to the server.
This occurs with the client application using Secure Remote Password (SRP), with the au-
thentication subkey as the SRP-𝑥, the server will authenticate the recovery key using the
previously supplied SRP-𝑣.

Upon successful completion of these steps, the recovery key is authenticated and the client appli-
cation can proceed with recovery.

12.6.3 Recovery key policies
A recovery key may implement a policy to control how it can be used. This is selected by the
user when the key is generated, and stored alongside the key on the server. These policies allow
additional controls to be added, beyond simple possession of the key, to ensure the user is autho-
rized to use the key. The server won’t provide the encrypted key set symmetric key to the client
application until all policies are satisfied.

In addition to the polices applied as part of the recovery key itself, the server may also apply
additional policies to the recovery process, this includes (at a minimum):

1. Recovery is aborted if the user successfully authentication during the recovery process.

2. Recovery is aborted if the user has successfully authenticated during the prior hour.

3. Recovery is aborted if the recovery key had an aborted attempt in the prior 24 hours.

12.6.4 Recovery key use
The server will return the encrypted key set symmetric key after authentication is complete and all
recovery policies complied with. The client application can decrypt it using the encryption subkey,
allowing the user to regain access to their key set. The user will then be able to regenerate their
Secret Key and set a new account password, or otherwise set new root key material based on the
authentication model their account uses (e.g. setting a new passkey).

12.6.5 Recovery codes
Recovery codes are an implementation of recovery keys, with a policy applied to require email
verification before the recovery key can be used. As such, when a user want to recover access
to their account with a recovery code, they must verify their email address, then complete the
recovery process as described above.
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If the user can’t verify control of their email address, the server won’t provide the encrypted key
set symmetric key to the client application, and the recovery process will be aborted.
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Secrets Automation
As described in other sections (in particular “Amodern approach to authentication” and “Transport
security”), all authenticated interactions with 1Password require that the client prove knowledge
of the session key without revealing any secrets. That session key in turn can only be established
through proof of knowledge or access to the account password and Secret Key.

This aspect of our security design makes it much harder for someone to work their way around
1Password’s authentication, as every request to the service is cryptographically bound to the au-
thentication process itself. It also limits the number of authentication attempts a client can perform
in a particular time period.

This security design introduces a challenge when automated processes need to retrieve, modify,
or create secrets in 1Password. Such apps and processes are not designed to sign in to 1Password
directly; typically those processes are designed to authentication through more traditional means.
Reauthenticating for each request would be cumbersome at best.

Figure 13.1: The 1Password Connect server lives in your environment and acts as a RESTful connection
between your apps and the 1Password service.

The overall solution we provide as part of Secrets Automation is a Connect Server. It’s capable of
signing in to 1Password directly, and apps and automated processes can interact with it through
a RESTful interface. The API for the Connect Server can be called by customer-created clients or
built with plug-ins we offer.
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Any automated process given power over an organization’s resources, particularly the kinds of
resources managed within 1Password, creates an area of attack.19 Therefore, it’s necessary to
design themwith security inmind. In general, there are two principles to adhere to when deploying
automations like these.

• The power allotted to any given automation should be closely tied and limited to what it’s
expected to do.

• The credentials required by the automation to perform its duties must be securely managed.

1Password Secrets Automation is designed according to these principles — it’s also design to help
customers follow the same principles.

You may want to read through what follows multiple times,20 because many of the interacting parts
are mentioned before they’re fully defined. In particular, the descriptions of the credentials JSON
and bearer token each depend on each other.

13.1 The Connect server
The Connect server is deployed in your environment and serves as a bridge between the client pro-
cesses and the 1Password service. Although simple in principle, there are a number of interacting
parts, so it’s useful to start with an overview and quick facts about it that will be elaborated on
later in this chapter.

• The 1Password Connect server has encrypted credentials necessary to sign in to 1Password
under a specific service account.

• The service accounts used by Connect servers are not given any ability to manage users or
vaults.

• The Connect server is deployed by the user in the user’s environment. AgileBits has no means
of accessing it.

• Authentication to the Connect server is through use of an HTTP Authorization header bearer
token.

• The credentials necessary to sign in as the service account are split between what’s stored
with the Connect server and bearer token.

13.1.1 Service account
1Password service accounts aren’t highly visible to users, but it’s important to mention them to
better describe how Secrets Automation works in practice.

Generally speaking, a service account is a special user within a 1Password account, but the user
isn’t associated with a person or group of people. They help an organization manage the secrets
used by entities with very specific roles and functions.

If Patty, a member of a 1Password account, is responsible for ensuring backups can be restored,
they may need access to the credentials for the backups system. But the automated processes that
perform backups and restorations shouldn’t have all of Patty’s 1Password privileges. They should
only have the privileges required to perform their duties.

The appropriate service accounts are set up in 1Password when setting up Secrets Automation.
During creation of a service account, the administrator will select which vaults the service account
will have access to and share those vaults with the service account. In this respect, the service
19This is true whether or not those processes are systematically managed within an organization or are left untracked.

It is not difficult to guess which might introduce more risk.
20Or, perhaps, zero times.
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account is like an ordinary user. Unlike an ordinary user, the service account has no management
privileges and will be prevented from further sharing the vaults to which it has been given the
keys by the 1Password backend system.

The account password for the service account is randomly generated and discarded after deriving
the Account Unlock Key (AUK) and SRP-𝑥. Key generation is performed client side, either in the
web client or the command-line interface (CLI).

Dangerous bend
The service accounts created for Secrets Automation complement the ones created for use
by the SCIM bridge, and used for automated management of 1Password users. They have
the ability to create and delete users, and add users to groups, but no ability to retrieve
data from vaults.

13.1.2 Local deployment
The Connect server, with the encrypted 1Password credentials, is deployed on your system. At
initial release, April 2021, we provided setups for deploying it within a Docker container or via
Kubernetes. At no time does AgileBits have access to the Connect server or data it stores.

13.1.3 Credential store
The Connect server locally stores encrypted credentials, containing the Account Unlock Key (AUK)
and SRP-𝑥 for the associated service account. This saves it from having to go through the entire
key derivation process each time it needs to start a 1Password session.

Figure 13.2: An overview of the credentials file, with three major components and some header information.

13.1.4 The credentials file
When setting up a Connect server initially, the user’s 1Password client constructs a 1password-
credentials.json file along with a bearer token. The credentials file has three substantive compo-
nents: The verifier is used as part of an additional authentication of the bearer token; encCreden-
tials contain the encrypted credentials necessary for the associated service account to sign in to
1Password; and uniqueKey is key shared between the client-facing Connect server and the Connect
server syncher.

13.1.5 Encrypted credentials
The encrypted credentials, illustrated in Figure 13.3 contain, unsurprisingly, the encrypted 1Pass-
word credentials required to unlock 1Password as the associated service account.
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Figure 13.3: The ‘encCredentials‘ object is a JSON web key (JWK) used to encrypted 1Password unlocking
credentials. It’s encrypted with a key derived from the bearer token.

Encryption, as with all our symmetric encryption, is with Advanced Encryption Standard (AES)
using Galois Counter Mode (GCM) for authenticated encryption. The nonce is given in the 𝑖𝑣.
When decrypted, the object is structured as in the Golang structure in Figure 13.4. The URL
will typically be something like example.1password.com; the email addresses created for service
accounts are never expected to be used for email, and only serve as a username. The user Uni-
versally Unique Identifier (UUID) uniquely identifies the service account Secret Key21, SRP-𝑥, and
Account Unlock Key (AUK) are as described in “A deeper look at keys.”

Figure 13.4: Decrypted credential structure. The URL, Email, UserUUID, and SecretKey are used to identify
the user, account, and service. The SRP-𝑥 and AUK are the secrets required to authenticate with 1Password
and decrypt (the keys needed to decrypt the keys which encrypt) the vault data.

Figure 13.5: Connect server verifier

21It’s only the non-secret part of the Secret Key used in the process. All service account identifying information must be
consistent for successful authentication.
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13.1.6 Verifier

The token within the bearer token is run through a key derivation function, which must match the
verifier stored by the Connect server.

This verification is redundant, as the signature verification of the entire bearer token provides all
the authentication necessary and guarantees the integrity of the request.

13.1.7 Interprocess key

The 1Password Connect server has two running processes. One provides the user-facing service
while the other synchronizes data with 1Password itself. Among other things, this allows the
Connect server to operate even when a direct connection to 1Password is unavailable.22 This also
allows for much faster responses from the Connect server. The data stored by the sync server is
encrypted as with any 1Password client.

Figure 13.6: Connect server IPC key. The Connect server interprocess key is used to secure communication
between the sync server and the client facing Connect service.

The interprocess key, here called uniqueKey23 is used as a shared secret between the client-facing
Connect server and synchronization server in order to encrypt the bearer token between them.

13.2 Bearer token

The bearer token is a JSON web token (JWT) that’s transmitted from the user’s client process to
the Connect server using the HTTP Authorization header. It contains a key that’s used, indirectly,
to decrypt the 1Password credentials stored by the Connect server. It also contains claims, in the
JWT sense, listing what 1Password vaults it has access to. As a signed JWT, it’s also used directly
for authentication to the Connect server. Serialized JWTs are composed of three base64-encoded
parts: header, payload, and signature. These parts are separated by the “.” character.

22This might be particularly handy if you are managing your network equipment with Secrets Automation.
23All keys are unique, but are some keys more unique than others? They’re all unique, but coming up with names for yet

another key when developing something is difficult, and the temporary placeholder name may stick around longer than
anyone might expect.
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Figure 13.7: Sample JWT header for bearer tokens

13.3 Header

An example header portion is shown in Figure 13.7. The kid identifies the signing key of the
corresponding service account key set, which is used to sign the bearer token. It must be a key
belonging to the subject field in the payload.

Dangerous bend
Although Elliptic Curve Digital Signature Algorithm (ECDSA) isn’t the most robust of digital
signature algorithms, it’s the one we settled on for the timebeing, as it’s widely available
in well-vetted cryptographic libraries. We find it particularly important to whitelist the al-
gorithms that we accept in a JWT, because it helps avoid a number of security concernsa
surrounding JSON Object Signing and Encryption (JOSE) and JWT.
In particular, the flexibility of signature and encryption algorithms can lead to downgrade
attacks. In addition to whitelisting signature algorithms (currently ECDSA using P-256 and
SHA-256 (ES256) is the only one the Connect server will accept) our verification process is
very aggressive in rejecting inconsistent or malformed tokens.

a@Arciszewski17:JOSE

13.3.1 Payload

A sample payload, or claims, portion of the bearer token can be seen in Figure 13.8.
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Figure 13.8: Sample JWT payload for bearer tokens. ‘AUUID‘ is the account UUID, and the subject ‘sub‘
is the user UUID for the service account user. The features, ‘fts‘, will always be ‘vaultaccess‘ for Secrets
Automation. The ‘token‘ is both an authentication secret to the Connect server and key used to derive the
key to decrypt the 1Password credentials stored on the Connect server.

Most of what appears in the figure can be understood from the JSON web token (JWT) standards,
which you may peruse at your leisure. What requires explanation follows.

• sub The subject of the bearer token is the UUID of the service account that signs into 1Pass-
word.

• auuid The account UUID.

• fts Features will always be “vaultaccess" for Secrets Automation.

• vts The vaults the client is claiming access to, along with its read and write claims.

• token The token which, among other things, is used to decrypt credentials stored by the
Connect server.

It’s worth noting that a particular service account may have more access to more vaults than
claimed in the bearer token payload. The Connect server won’t honor client requests that go
beyond the validated claims.

For example, if the associated service account has the ability to read and write to vaults 𝑉1 and 𝑉2,
while the signed claim is only for reading 𝑉1, the Connect server will only honor read requests for𝑉1. Naturally, if the service account associated with one of these tokens doesn’t have any access
to 𝑉3 but somehow shows up with a valid claim to it, the Connect server will reject the claim.

Even if the Connect server were somehow tricked into honoring such a claim, the 1Password
service wouldn’t return the data, and the Connect server wouldn’t be able to decrypt the data
even if it were returned.

13.3.2 Signature
The third part of the bearer token is the JSON web token (JWT) signature. The signature is created
by the associated service account using that account’s signing key. This signature covers the
payload of the bearer token, preventing tampering or forgery.
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Transport security
We designed 1Password with the understanding that data traveling over a network can be read
and tampered with unless otherwise protected. Here we discuss the multiple layers of protections
we have in place. Roughly speaking, there are three layers of protection.

1. 1Password’s at-rest encryption, as described in “How vault items are secured,” also applies
to data when it’s in transit.

Your items are always encrypted with vault keys, which in turn are encrypted by keys held by you
and not by the server. They remain encrypted this way in transit.

2. Transport Layer Security (TLS) with best practices (encryption, data integrity, authenticity
of server).

TLS the successor of SSL, puts the “S” in “HTTPS.” It encrypts data in transit and authenticates
the server so the client knows to whom it’s talking.

3. Secure Remote Password (SRP) authentication and encryption

The login process provides mutual authentication. Not only does your client prove who it is to the
server, but the server proves who it is to the client. This is in addition to the server authentication
provided by TLS. During login, a session key will be agreed upon between client and server, and
communication will be encrypted using Advanced Encryption Standard (AES) in Galois Counter
Mode (GCM).

The protocol provides a layer of authentication and encryption that’s independent of Transport
Layer Security (TLS).

When discussing transport security, it’s useful to distinguish different security notions: integrity,
authenticity, and confidentiality.24 “Confidentiality” means the data remains secret, “authen-
ticity” means the parties in the data exchange are talking to whom they believe they’re talking to,
and data “integrity” means the data transmitted can’t be tampered with. Tampering includes not
only changing the contents of a particular message, but also preventing a message from getting
to the recipient or injecting a message into the conversation the authorized sender never sent.

Because parts of systems can fail, it’s useful to design the overall system so a failure in one part
doesn’t result in total failure. This approach is often called defense in depth.

As summarized in Table 14.1, each encryption layer is independent of the others. If one fails,
the others remain in place (though see A.1 for an exception). The at-rest encryption described in
“How vault items are secured is not part of a communication protocol, and so authentication is not
applicable to it. Transport Layer Security (TLS), as it’s typically used, authentication the server
but doesn’t authenticate the client.

24When discussing information security, the acronym “CIA” is often used to refer to confidentiality, integrity, and avail-
ability. But when considering data transport security, integrity and authenticity play a major role. In neither case should
the abbreviation be confused with the well-known institution, the Culinary Institute of America.
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Table 14.1: All these mechanisms are used to protect data in transit. “SRP+GCM” refers to the combination
of SRP and our communication encryption; “at-rest encryption” refers to the normal encryption when stored.

SRP+GCM TLS AT-REST ENCRYPTION

Confidentiality 3 3 3

Data integrity 3 3 3

Server authenticity 3 3 7

Client authenticity 3 7 7

One limitation of SRP+GCM is that each message is encrypted individually. An attacker who can
get in the middle of that connection, could replay messages sent over SRP+GCM and the server
will accept them. We’d like to expand the security goals of this transport encryption such that
messages cannot be replayed in the future.

14.1 Data at rest

Your 1Password data is always encryptedwhen it’s stored anywhere25 whether on your computer or
on our servers, and it’s encrypted with keys that are encrypted with keys derived from your account
password and Secret Key. Even if there were no other mechanisms to provide data confidentiality
and integrity for the data that reaches the recipient, 1Password’s at-rest encryption sufficiently
provides both.

Because it’s designed for stored data, this layer of data encryption doesn’t ensure messages can’t
go missing or older data is not replayed. It also doesn’t authentication the communication channel.

14.2 TLS
Transport Layer Security (TLS) puts the “S” in “HTTPS”. It provides encryption, data integrity,
and authenticity of the server.

Our TLS configuration includes HTTP Strict Transport Security (HSTS) and a restricted set of
cipher suites to avoid downgrade attacks. Precise policies and choices will change more rapidly
than the document you’re reading will be updated.

Neither certificate pinning nor DNSSec have been implemented. Given the mutual authentication
described in “A modern approach to authentication,” the marginal gain in security provided by
such measures isn’t something we consider to be worth the risk of availability loss should those
extra measures fail in some way. Following research26 and analysis27 of the value of certain secu-
rity indicators and extended validation certificates in particular, we’re no longer using extended
validation certificates.

14.3 Our transport security
Our use of Secure Remote Password (SRP) authentication between the client and server provides
mutual authentication. Both the server and client will know they’re talking to exactly who they
think they’re talking to.
25Decrypted Documents may be written to your device’s disk temporarily after you open them.
26Jackson et al. (2007)
27Hunt (2019)
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This is in addition to the server authentication provided by Transport Layer Security (TLS). Thus,
if TLS fails in some instances to provide proper authentication, SRP still provides authentication.

Not only does the client prove its identity to the server, but the server proves its identity to the
client.

14.3.1 Client delivery
This section has focused on the transport security between 1Password clients and server. For
discussion of delivery of the client itself see A.1 in “Beware of the leopard.”

14.3.2 Passkey and single sign-on unlock caveats
You can use a passkey or single sign-on (SSO) to unlock a 1Password account, as described in
@ref(#passkeySSO). When you sign in with a passkey, that sign-in with the 1Password server is
only protected by Transport Layer Security (TLS). When you sign in with your SSO provider, they’re
responsible for protecting your sign-in information on the network. Single sign-on providers gen-
erally only protect the confidentiality of login information using TLS.

After completing authentication with either method, a client will fetch an encrypted credential
bundle from the server. A client can only use Secure Remote Password (SRP) after fetching this
bundle. If an attacker can break the security of Transport Layer Security (TLS), they can obtain
an encrypted copy of the credential bundle.
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Chapter 15

Server infrastructure

15.1 What the server stores
1Password stores account, team, vault, and user information in a relational database. Member-
ship in teams and access to team resources, including vaults, groups, and items, are determined
by fields within each database table. For example, the users table includes three fields used to de-
termine user identity and team membership. These fields are uuid, id, and account_id. The user’s
account_id field references the accounts table id field, and this relationship determines member-
ship within an account.

These relationships — users to accounts, accounts to vaults, vaults to items — don’t determine a
user’s ability to encrypt or decrypt an item, they only determine the ability to access the records.
The relationship from a user to an item within a team vault is as follows:

• A users table entry has an account_id field that references the id field in the accounts table.

• An accounts table entry has an id field which is referenced by the account_id field in the vaults
table.

• A vaults table entry has an id field which is referenced by vault_id field in the vault_items
table.

• A vault_items table entry has the encrypted_by, enc_overview, and enc_details fields which
reference the required encryption key and contain the encrypted overview and detail infor-
mation for an item.

A malicious database administrator may modify the relationships between users, accounts, teams,
vaults, and items, but the cryptography will prevent the items from being revealed.

Principle 3 states the system must be designed for people’s behavior, and that includes malicious
behavior. A malicious database administrator may be able to modify the relationships between
users and items, but he will be thwarted by the cryptography when he, or his cohort in crime,
attempts to decrypt the item. The cryptographic relationship between a user and an item within
a team vault is as follows:

• A vault_items entry has a vault_id field which references the vault_id field in the
user_vault_access table. The enc_overview and enc_details fields in a vault_items en-
try are encrypted with the key contained in the enc_vault_key field of the corresponding
user_vault_access entry, which is encrypted itself.

• A user_vault_access entry is located using the id field for the users table entry and id field
for the vaults table entry. The enc_vault_key field in the user_vault_access entry is encrypted
with the user’s public key and may only be decrypted with the user’s private key.

• A users entry is located using the email address the user provided when signing in and the
accounts entry for the matching domain. The users entry includes the pub_key field which is
used to encrypt all the user’s secrets.

With the hard work of the malicious database administrator, the user may have access to a
user_vault_access table entry which has the correct references, but since 1Password never has
a copy of the unencrypted vault key, it’s impossible for the user to have a copy of the vault key
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encrypted with her public key. The malicious database administrator could copy the encrypted
vault key for another user, but the user wouldn’t have the private key required to decrypt the
encrypted vault key.

Principle 2 states we should trust the math, and as has been shown here, even if a malicious
database administrator were to modify the account information to grant a user access to an en-
crypted item, the user still lacks the secrets needed for decryption. The attacker has been foiled
again.

Finally, principle 4 states that our design should be open for review. While we hope our database
administrators don’t become malicious, we’ve provided all the information needed to grant unau-
thorized access to encrypted items knowing they will remain protected by cryptography.

The example of a malicious database administrator was chosen because the worst-case scenario is
someone sitting at a terminal on the back end server, issuing commands directly to the database,
with a list of database tables and column names in hand.

15.2 How your data is stored
1Password stores all database information using an Amazon Web Services Aurora database in-
stance. The Amazon Aurora service provides a MySQL-compatible SQL relational database. Au-
rora provides distributed, redundant and scalable access. Some of the tables and their uses were
provided earlier.

Data is organized in the traditional manner for a relational database, with tables consisting of rows
and columns,28 with various indices defined to improve performance.

Binary data, which may include compressed JSON objects representing key sets, templates, and
other large items is compressed using ZLIB compression as described in RFC 1950.

The tables are listed as follows:

• accountsContains registered teams, which originated from an initial signup request, approval,
and registration. This table includes the cleartext team domain name (domain), team name
(team) and avatar (avatar). Other tables will typically reference the accounts table using the
id field.

• groups Used to reference groups of users in a team. The groups table is primarily refer-
enced by the group_membership and group_vault_access tables. This table includes the clear-
text group name (group_name) and description (group_desc), public key (pub_key), and avatar
(avatar).

• invites Contains user invitations. The unencrypted acceptance_token is used to prevent in-
appropriate responses to an invitation and not relevant once a user has been fully initial-
ized. The remaining unencrypted columns are the user’s given name(first_name), family
name (last_name) and email address (email).

• signups Contains user requests to use the 1Password server. This table includes the cleartext
team name (name) and email address of the requester (email).

• users Contains registered users, which originated via the invitation process and were
eventually confirmed as users. This table includes the cleartext user name (first_name
and last_name), email address (email), a truncated copy of the lower-case email address
(lowercase_email), the user’s public key (pub_key), and an avatar (avatar).

Aggregating the list of unencrypted fields above, the data subject to disclosure in the event of a
data breach or required disclosure are:
28Only the cleartext columns will be listed at present as these are the columns which would be disclosed in the event of a

data breach. The encrypted columns will be protected by the security of the various keys which the server doesn’t possess.
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• Team domain name, long-form name, and avatars.

• IP addresses used by devices

• MFA secrets

• Client device makes, models, operating systems, and versions

• Public keys, which are intended to be public.

• Group names, descriptions, and avatar file names.

• Users’ full names, email addresses, and avatar file names.
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Appendix A: Beware of the leopard

Beware of the leopard
“You hadn’t exactly gone out of your way to call attention to them had you? I mean like
actually telling anyone or anything.”
“But the plans were on display…”
“On display? I eventually had to go down to the cellar to find them.”
“That’s the display department.”
“With a torch.”
“Ah, well the lights had probably gone.”
“So had the stairs.”
“But look you found the notice didn’t you?”
“Yes,” said Arthur, “yes, I did. It was on display in the bottom of a locked filing cabinet stuck
in a disused lavatory with a sign on the door saying Beware of the leopard.”a

a@hhg79

This chapter discusses places where the actual security properties of 1Password may not meet
user expectations.

A.1 Crypto over HTTPS
1Password offers a web client which provides the same end-to-end (E2E) encryption as when using
the native clients. The web client is fetched from our servers as a set of JavaScript files (compiled
from TypeScript source) that’s run and executed locally in the user’s browser on their ownmachine.
Although it may appear to users of the web client that our server has the capacity to decrypt user
data, all encryption occurs on the user’s machine using keys derived from their account password
and Secret Key. Likewise authentication in the web-client involves the same zero-knowledge au-
thentication scheme described in 4.

Despite that preservation of end-to-end (E2E) encryption and zero-knowledge authentication, the
use and availability of the web client introduces a number of significant risks.

• The authenticity and integrity of the web client depends on the integrity of the TLS
connection by which it’s delivered. An attacker capable of tampering with the traffic that
delivers the web client could deliver a malicious client to the user.

• The authenticity and integrity of the web client depends on the security of the host
from which it’s delivered. An attacker capable of changing the web client on the server
could deliver a malicious client to the user.

• The web client runs in a very hostile environment: the web browser. Some attacks on
the browser (like a malicious extension) may be able to capture user secrets. This is discussed
further in A.1.1.

• Without the web-client users would only enter their account password into native
clients and so would be less vulnerable to phishing attacks.
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• The web client creates the false impression for many users that encryption is not
end-to-end. Although this may not have direct security consequences for the user, it may
re-enforce unfortunately low expectations of security in general.

User mitigations include:

• Use (code signed) native clients as much as possible.

• Keep browser software up to date

• Create a specific browser profile for using the web-client

• Pay close attention to browser security warnings

• Use only on trusted networks.

• Manually check certificates

Our mitigations include:

• Use the most recent Transport Layer Security (TLS) version

• Don’t support weak cipher suites (so avoiding many downgrade attacks)

• Use of safe JavaScript constructions.

• Use HTTP Strict Transport Security (HSTS) (so avoiding HTTPS to HTTP downgrade attacks)

• Pin Certificates (not yet implemented)

Browser warnings
Always be sure to heed all browser warnings regarding TLS connections.

A.1.1 Crypto in the browser
Running security tools within a browser environment brings its own perils, irrespective of whether
it’s delivered over the web. These perils include:

• The browser itself is a hostile environment, running processes and content that are neither
under your control nor ours. Sandboxing within the browser provides the first line of defense.
Structuring our in-browser code to expose only what needs to be exposed is another. Over
the past decade, browsers have made enormous improvements in their security and in their
isolation of processes, but it still remains a tough environment.

• JavaScript, the language used within the browser, offers us very limited ability to clear data
frommemory. Secrets we’d like the client to forget may remain in memory longer than useful.

• We have a strictly limited ability to use security features of the operating system when op-
erating within the browser. See section A.10.2 for how this limits the tools available for
protecting the Secret Key when stored locally.

• There’s a paucity of efficient cryptographic functions available to run in JavaScript. As a
consequence, the WebCrypto facilities available in the browsers we support impose a limit
on the cryptographic methods we can use. For example, our reliance on PBKDF2 instead of
a memory-hard KDF such as Argon2 is a consequence of this.
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A.2 Recovery Group powers

From a cryptographic point of view, the members of a Recovery Group have access to all the vault
keys in that group.29 Server policy restricts what a member of the Recovery Group can do with that
access, but if a Recovery Group member is able to defeat or evade server policy and gain access to
an encrypted vault (for example, as cached on someone else’s device) then that Recovery Group
member can decrypt the contents of that vault.

Depending on the nature of the threat to the team’s data and resources an attacker will put into
acquiring it, members of the Recovery Group and their computers may be subject to targeted
attacks.

Recovery group members
Members of the recovery group must be selected with care and keep their systems secure.

A.3 No public key verification

At present there’s no practical method30 for a user to verify the public key they’re encrypting data
to belongs to their intended recipient. As a consequence it would be possible for a malicious or
compromised 1Password server to provide dishonest public keys to the user, and run a successful
Man in the Middle (MITM) attack. Under such an attack, it would be possible for the 1Password
server to acquire vault encryption keys with little ability for users to detect or prevent it

This is discussed in greater detail in “Appendix C.”

A.4 Limited re-encryption secrecy

A.4.1 Revocation

Removing someone from a vault, group, or team isn’t cryptographically enforced. Cryptographic
keys are not changed.

A member of a vault has access to the vault key, as a copy of the vault key is encrypted with that
member’s public key. When someone is removed from a vault, that copy of the vault key is removed
from the server, and the server will no longer allow that member to get a copy of the vault data.

If prior to being removed from a vault the person makes a copy of the vault key which they store
locally, they will be able to decrypt all future data if they find a way to obtain the encrypted vault
data. This is illustrated in Story 10. Note this requires the attacker both plan ahead and somehow
acquire updated data.

291Password Teams accounts also have a permission called “Manage All Groups” with equivalent cryptographic access,
which is only given to the Administrators and Owners groups by default.
30An impractical method for the users to run 1Password in a debugger to inspect the crucial values of the public keys

themselves. Additionally, the 1Password command line utility (as of version 0.21), has an undocumented method to display
public keys and fingerprints of users.
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Story 10: Mr. Talk is not a good team player
[Monday] Patty (a dog and Team administrator) adds Mr. Talk (neighbor’s cat) to the Squir-
rel Watchers vault. Molly (another dog) is already a member.
[Tuesday] Mr. Talk makes a copy of all of his keys and stores that copy separately from
1Password.
[Wednesday]Mr. Talk is discovered stealing Patty’s toys and is expelled from the vault (and
from the team).
[Thursday] Patty updates the Squirrel Watchers vault with the new hiding place for her
toys.
[Friday]Mr. Talk manages to steal a cached copy of the encrypted vault fromMolly’s poorly
secured device. (Molly still hasn’t learned the importance of using a device passcode on her
phone.)
[Saturday]Mr. Talk decrypts the data he stole on Friday using the keys he saved on Tuesday,
and is able to see the hiding place Patty added on Thursday.
To launch the attack, Mr. Talk needed to acquire a copy of the encrypted data the server
would no longer provide, and he needed to anticipate being fired.

A.4.2 Your mitigations
If you feel that someone removed from a vault may have a store of their vault keys and will somehow
be able to acquire new encrypted vault data despite being denied access by server policy, then it’s
possible to create a new vault (which will have a new key), and move items from the old vault to
the new one. Someone revoked from a vault won’t be able to decrypt the data in the new vault no
matter what encrypted data they gain access to.

A.5 Account password changes don’t change keysets
A change of account password or Secret Key does not create a new personal keyset, it only changes
the Account Unlock Key (AUK) with which the personal key set is encrypted. Thus an attacker who
gains access to a victim’s old personal key set can decrypt it with an old account password and
old Secret Key, and use that to decrypt data that was created by the victim after the change of the
account password.

A.5.1 Your mitigations
A user’s personal keyset may be replaced by voluntarily requesting their account be recovered.
This will create a new personal keyset which will be used to re-encrypt all the vault keys and other
items which were encrypted with the previous personal keyset.

A.6 Local client account password has control of other ac-
count passwords

Most 1Password client applications can handle multiple 1Password user accounts. It’s common,
perhaps even typical, for an individual to have a 1Password membership as part of the business
or organization they’re a member of, as well as being a member of their own 1Password family.

Most 1Password clients are designed to unlock all accounts when unlocked. The account that will
locally contain the encrypted secrets to unlock the others is called the primary account. It’s (for
most clients) the first account the client signed into. The precise details of how this is handled
can vary from client to client, but in essence, the secrets needed to unlock a secondary account
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(the Account Unlock Key (AUK) and SRP-𝑥) are encrypted with (keys encrypted by) the AUK of the
primary account.

The security risk is that account password policies that may be set and expected by an organiza-
tion won’t be followed in practice if the account with such policies is a secondary account for a
particular client.

Story 11: A weak primary account password unlocks a stronger account
Molly (a dog) is a member of a business account for Rabbit Chasers Inc., and Patty, an
administrator for Rabbit Chasers Inc., has used the features of a business account to set very
strict account password requirements for all of its members. So Molly’s account password
for that account does conform to that account’s requirements. Patty is naturally under
the impression that Molly must use the strong account password when unlocking her work
account.
But Molly is also a member of a family account, and in her family account she has set her
password to be squirrelrabbit, which is easily guessable by anyone familiar with Molly.
Furthermore, Molly set up her family account first when she set up 1Password on her device.
She added her work account later.
When she first added her work account to that device, she had to enter the strong account
password for that account, but every time she unlocks 1Password thereafter, she unlocks
both accounts with squirrelrabbit.
One day the evil neighborhood cat, Mr. Talk, stealsMolly’s device. Mr. Talk can guessMolly’s
weak family account account password, and unlocking 1Password on Molly’s computer can
now unlock Molly’s work account as well.
Patty is not amused.

An additional problem with this scheme is that users are more likely to forget they have a separate
account password for their secondary account(s), and are more likely to forget those passwords.

A.6.1 Mitigations
There are no mitigations for users of 1Password 7 and earlier other than risk awareness. 1Pass-
word 8 periodically requests the user’s account password by default.

A.7 Policy enforcement mechanisms not always clear to user

Readers of this document may recall from “Access control enforcement” that some controls (such
as the ability to decrypt and read the contents of a vault) are enforced through cryptography, while
others are enforced only through the client user interface (such as the ability to print the contents
of a vault they have use access to). The security properties of those differ enormously. In particular,
it’s very easy to evade policy that is only enforced by the client.

Many team administrators will not have read this document or other places where the distinction
is documented. Therefore, there’s a potential for them to have an incorrect impression of the
security consequences of their decisions.

A.8 Malicious client

There’s no technical barrier to a malicious client, which might generate bad keys or send keys to
some third party.
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A.9 Vulnerability of server data
It should be assumed that governments, whether through law enforcement demands or other
means, may gain access to all the data we have or our data hosting provider has. This may happen
with or without our knowledge or consent. The same is true for non-governmental entities which
may somehow obtain server data. Your protection is to have a good account password and to keep
your Secret Key secure.

Although we may resist law enforcement requests, we obey the laws of the jurisdictions in which
we are obliged to do so.

A.10 Malicious processes on your devices
Malware that can inspect the memory of your computer or device when the 1Password client has
unlocked your data will be able to extract secrets from the 1Password process. Malware that
can install a malicious version of 1Password and have you execute it will also be able to extract
your secrets. After malware running on a system has gained sufficient power, there’s no way in
principle to protect other processes running on that system.

But we must also consider the threat posed by less powerful malware, and in particular with
respect to the exposure of the Secret Key.

A.10.1 Malicious or undesired browser components
When you use 1Password in your web browser, browser extensions – even built-in browser features
– can expose the data you fill into your browser. This can have explicit malicious intent, like when
a browser extension monitors the data input into text fields to spy on you. Sometimes this can be
accidental, such as when browser extensions submit the data you put into text fields to perform
autocompletion features, perform translation, or store or analyze the text you’re typing in some
other way.

The 1Password browser extension tries to avoid filling certain form fields if it suspects data may
be submitted elsewhere; however, you should use caution when selecting your web browser and
extensions, and attempt to understand if and when they send text you enter other places.

A.10.2 Locally exposed Secret Keys
After a client is enrolled, it will store a copy of the Secret Key on the local device. Because the
Secret Key must be used to derive the user’s Account Unlock Key (AUK) it cannot be encrypted by
the same AUK or by any key directly or indirectly encrypted with the AUK. Depending on client
and client platform, the Secret Key may31 be stored on the device using some of the protections
offered by the operating system and lightly obfuscated. But it should be assumed that an attacker
who gains read access to the user’s disk will acquire the Secret Key.

Recall from the discussion of two-secret key derivation (2SKD) in 4.1.3 that the Secret Key is de-
signed so an attacker won’t be in a position to launch an offline password-guessing attack if they
capture data from our server alone. That is, the Secret Key provides extremely strong protec-
tion for users if our servers were to be breached. The Secret Key plays no security role if the
user’s system is breached. In the latter situation, the strength of the user’s account password32
determines whether an attacker will be able to decrypt data captured from the user’s device.
31We’re deliberately vague about this, as practice may change rapidly from version to version, including different behav-

iors on different operating system versions.
32The slow hashing (described in 8.2.4) in our key derivation function goes some way to increase the work that an attacker

must do to verify account password guesses from data captured from the user, but it cannot substitute a strong account
password.
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A.10.3 Device keys used with passkey and single sign-on unlock
A client enrolled using passkey or single sign-on (SSO) unlock (described in “Unlock with a passkey
or SSO”) doesn’t store a Secret Key locally. Instead it stores a device key locally. The combination
of a device key and successful passkey or SSO authentication is required to unlock a 1Password
account on those devices.

On iOS, macOS, and Android devices, we protect the device key with the device’s hardware security
features; other devices don’t reliably allow protecting an encryption key with hardware, nor doweb
browsers on any platform. In cases which we can’t store the device key protected by a hardware
mechanism, we store it (lightly obfuscated) on the computer’s storage drive. This means malware
could read the device key and can use it to attempt to access a user’s 1Password account.

If Oscar runs malware on Alice’s computer when she uses single sign-on (SSO) to unlock 1Pass-
word, he can steal both Alice’s device key and Alice’s SSO session cookies from her browser’s
cache. Oscar can use the combination of items to unlock Alice’s 1Password account. Similarly,
if Oscar has access to the hard drive contents from Alice’s computer (like when he gains access
to a backup of Alice’s computer or performs forensic analysis on her computer) he can copy this
information and unlock Alice’s 1Password account, as well.

Devices that unlock with passkey store their passkey unlocking information in their operating
system’s passkey provider. We rely on the operating system and device manufacturer to prevent
malware from being able to steal the authentiction information for passkeys. We don’t use session
information stored in the web browser to unlock accounts with passkeys.

Because of the risks of the device key and single sign-on authorization data sitting together on a
disk we only offer single sign-on (SSO) to businesses that can weigh the risks and rewards of using
SSO with device security aspects. Businesses using SSO can configure the details of devices used,
the single sign-on provider used, and the way single sign-on is used within 1Password to fit their
individual security needs.

A.11 Revealing who is registered
If Oscar suspects that alice@company.example is a registered user in a particular Team or Family, it’s
possible for him to submit requests to our server that would allow him to confirm an email address
is or isn’t a member of a team. Note that this does not provide a mechanism for enumerating
registered users, it’s only a mechanism that confirms whether or not a particular user is registered.
Oscar must first make his guess and test that guess.

We attempted to prevent this leak of information and believed we had. A design error (that’s
difficult to fix) means we must withdraw our claim of that protection.

A.12 Use of email
Both invitations and recovery messages are sent by email. It’s very important that when admin-
istrators or Recovery Group member take actions that result in sensitive email being sent, they
check with the recipients through means other than email that the messages were received and
acted upon.
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Appendix B: Secure Remote Pass-
word
In “A modern approach to authentication,” we spoke of mathematical magic.

Using some mathematical magic the server and the client are able to send each other
puzzles that can only be solved with knowledge of the appropriate secrets, but no secrets
are transmitted during this exchange.

This appendix offers some insight into that magic.

We insist on this magic even though 1Password’s principle source of security is through end-to-
end (E2E) encryption instead of authentication. We need to ensure our authentication system
would never provide an attacker the means to learn anything about the secrets needed to decrypt
someone’s data — even if it were compromised.

We use Secure Remote Password (SRP) as our password-authenticated key exchange (PAKE) to
achieve the authentication goals set out in Figure 4.1. With SRP, the client can compute from a
password (and a few other things) a number that is imaginatively called 𝑥. This secret 𝑥 is never
transmitted.

B.0.1 Registration
The client computes 𝑥 from the user’s account password and Secret Key and from some non-secret
information as described in section B.0.3.

During first registration, the client will compute from 𝑥 a verifier, 𝑣. During initial registration,
the client sends 𝑣 to the server, along with a non-secret salt. The client and the server also need
to agree on some other non-secret parameters. The verifier is the only sensitive information ever
transmitted, and it’s sent only during initial registration.

Dangerous bend

The verifier 𝑣 cannot be used directly to compute either 𝑥 or the password that was used to gen-
erate 𝑥; however, it’s similar to a password hash in that it can be used in password cracking
attempts. That is, an attacker who has acquired 𝑣 can make a password guess and see if process-
ing that guess yields an 𝑥 that produces the 𝑣. Our use of two-secret key derivation (2SKD) makes
it impossible to launch such a cracking attack without also having the user’s Secret Key.

B.0.2 Sign-in
The client will be able to compute 𝑥 from the account password, Secret Key, and salt as described
in 8.2.33 The server has 𝑣. Because of the special relationship between 𝑥 and 𝑣, the server and
client can present each other mathematical challenges that achieve the following:

• Prove to the server the client has the 𝑥 associated with 𝑣.
• Prove to the client the server has the 𝑣 associated with 𝑥.

33The client may locally store 𝑥 in a way that’s encrypted with keys that depend on the Account Unlock Key (AUK) instead
of recalculating it afresh each time.
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• Let the client and server agree on a key 𝑆 which can be used for further encrypting the
session.

During that exchange, no information about the user’s password is revealed, nor is any information
about 𝑥 or 𝑣 or 𝑆 revealed to someone listening in. Furthermore, the mathematical challenge the
client and server present to each other is different each time, so one session cannot be replayed.

B.0.3 With a strong KDF
The standards documents describing Secure Remote Password (SRP) offer the generation of 𝑥
from the password, 𝑃 ; salt, 𝑠; and username, 𝐼 ; as in Figure B.1. The values of 𝑔 and 𝑁 are public
parameters that will be further described in B.1.

Figure B.1: Deriving 𝑥 and 𝑣 as given in RFC 5054, where H represents a cryptographic hash function (for
example, SHA256).

Although it’s infeasible to compute 𝑃 from 𝑥 or 𝑥 from 𝑣, it’s possible to use knowledge of 𝑣 (and
the public parameters) to test a candidate password, 𝑃 ′. All an opponent needs to do is compute
𝑣′ from 𝑃 ′ and see if 𝑣′ equals 𝑣. If 𝑣′ = 𝑣 then the guessed password 𝑃 ′ is (almost certainly) the
correct password.

As discussed elsewhere, we offer three defenses against such an attack if an attacker obtains 𝑣
(which is stored on our server and transmitted during initial registrations).

• We use two-secret key derivation (2SKD) with the completely random Secret Key as one of
the secrets in deriving 𝑥. Password cracking isn’t a feasible approach for an attacker without
the Secret Key. For a discussion of this point, see 3.2.

• We use a slower key derivation function for deriving 𝑥 than the one shown in Figure B.1, so
even if an attacker obtains both 𝑣 and the user’s Secret Key, each guess is computationally
expensive.

• We encourage the use of strong account passwords. Thus an attacker who has both 𝑣 and the
account password will need to make a very large number of guesses.

The latter two mechanisms come into play only if the Secret Key is acquired from the user’s device.

It should be noted that although the password processing shown in Figure B.1 is presented in RFC
505434, the standard does not insist on it. Indeed, RFC 5054 refers to RFC 295435 S3.1 which
states

SRP can be used with hash functions other than [SHA1]. If the hash function produces
an output of a different length than [SHA1] (20 bytes), it may change the length of some
of the messages in the protocol, but the fundamental operation will be unaffected…

Any hash function used with SRP should produce an output of at least 16 bytes and have
the property that small changes in the input cause significant nonlinear changes in the
output. [SRP] covers these issues in more depth.

So in our usage, we compute 𝑥 using the key derivation method described in detail in 8.2.

34Taylor et al. (2007)
35Rehbehn and Fowler (2000)
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B.1 The math of SRP

B.1.1 Math background
The client will have its derived secret 𝑥, and the server will have its verifier, 𝑣. The mathematics
that allow for the client and server to mutually authenticate and arrive at a key without exposing
either secret is an extension of Diffie-Hellman key exchange (DHE). This key exchange protocol is,
in turn, based on the discrete logarithm problem (DLP).

Recall (or relearn) from high school math:

(𝑏𝑛)𝑚 = 𝑏𝑛𝑚 (B.1)

Equation (B.1) holds true even if we restrict ourselves to integers and do all of this exponentiation
modulo some number 𝑁 .

The crux of the discrete logarithm problem (DLP) is that if we pick 𝑁 and 𝑔 appropriately in
equation (B.2)

𝑣 = 𝑔𝑥(mod𝑁) (B.2)

It’s easy (for a computer) to calculate 𝑣 when given 𝑥, but infeasible to compute 𝑥 when given 𝑣.
Calculating 𝑥 from 𝑣 (given 𝑔 and 𝑁 ) is computing the discrete logarithm of 𝑣. To ensure calcu-
lating the discrete logarithm is, indeed, infeasible, 𝑁 must be chosen carefully. The particular
values of 𝑁 and 𝑔 used in 1Password are drawn from the groups defined in RFC 3526.36 Given
current and anticipated computing power, 𝑁 should be at least 2048 bits.

Figure B.2: Sophie Germain (1776–1831) proved that Fermat’s Last Theorem holds for exponents 𝑛 = 2𝑞+1
where both 𝑞 and 𝑛 are prime. Primes like 𝑞 are now called ’Sophie Germain primes.’ Germain stole the
identity of a male mathematics dropout to enter into correspondence with mathematicians in France and
elsewhere in Europe. It’s only after they’d come to respect her work that she could reveal her true identity.
Her fame at the time was mostly for her work in mathematical physics, but it her work in number theory that
plays a role in cryptography today.

B.1.2 Diffie-Hellman key exchange
If Alice and Bob have agreed on some 𝑔 and 𝑁 , neither of which need to be secret, Alice can pick
a secret random number 𝑎 and calculate 𝐴 = 𝑔𝑎(mod𝑁). Bob can pick his own secret, 𝑏, and
calculate 𝐵 = 𝑔𝑏(mod𝑁). Alice can send 𝐴 to Bob, and Bob can send 𝐵 to Alice.

Assuming an appropriate 𝑁 and 𝑔, Alice won’t be able to determine Bob’s secret exponent 𝑏, and
Bob won’t be able to determine Alice’s secret exponent 𝑎. No one listening in – even with full
36Kivinen and Kojo (2003)

75



APPENDIX B. APPENDIX B: SECURE REMOTE PASSWORD

knowledge of 𝑔, 𝑁 , 𝐴, and 𝐵 – will be able to determine 𝑎 or 𝑏.37 There is, however, something
that both Alice and Bob can calculate that no one else can. In what follows, it goes without saying
(or writing) that all operations are performed modulo 𝑁 .

Alice can compute:

𝑆 = 𝐵𝑎 (B.3)

= (𝑔𝑏)𝑎 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝐵 = 𝑔𝑏 (B.4)

= 𝑔𝑏𝑎 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 (𝐵.1) (B.5)

Equation (B.3) is what Alice actually computes because she knows her secret 𝑎 and has been given
Bob’s public exponent. But note that the secret, 𝑆, that Alice computes is the same as what we
see in (B.5).

Bob can compute:

𝑆 = 𝐴𝑏 (B.6)

= (𝑔𝑎)𝑏 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝐴 = 𝑔𝑎 (B.7)

= 𝑔𝑎𝑏 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 (𝐵.1) (B.8)

From equations (B.8) and (B.5) we see that both Alice and Bob are computing the same secret, 𝑆.
They do so without revealing any secrets to each other or anyone listening in.

We use the session key, 𝑆, as an additional encryption and authentication layer on the client/server
communication for that session. This is in addition to the encryption and authentication provided
by TLS and the authenticated encryption of the user data.

All the secrets used and derived during Diffie-Hellman key exchange (DHE) are ephemeral: They’re
created for the individual session alone. Alice will create a new 𝑎 for each session; Bob will create
a new 𝑏 for each session; the derived session key, 𝑆, will be unique to that session. One advantage
of this is that a successful break of these secrets by some attacker will allow the attacker to decrypt
the messages of that session only.

37There are numerous mathematical assumptions behind the claim that it’s infeasible to determine 𝑎 from 𝐴. Mathe-
maticians are confident that some things involved are “hard” to compute but lack full mathematical proof. There are also
some physical assumptions behind the security claims. We know the relevant computations we want to be difficult are
not hard using large quantum computers of a certain sort. We’re assuming, with some justification, that constructing the
appropriate sort of quantum computer is beyond anyone’s reach for at least a decade. We anticipate the development of
post-quantum cryptographic algorithms over the next decade or so, but nothing is yet suitably mature to be of use to us
now.
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Figure B.3: In Diffie-Hellman key exchange, N and g are already known to all parties and all exponentiation
is done mod N. The form given here is somewhat less general than it could be in order to avoid having to
introduce more notation and abstractions.

B.1.3 Authenticated key exchange
Diffie-Hellman key exchange (DHE), as described in the previous section, allows Alice and Bob to
agree on an encryption key for their communication. It doesn’t, however, include a mechanism by
which either Alice or Bob can prove to the other they are Alice and Bob. Our goal, however, is to
have mutual authentication between the 1Password client and server.

In order for Alice to prove to Bob she’s the same “Alice” he has corresponded with previously, she
needs to hold (or regenerate) a long-term secret. At the same time, we don’t want to transmit any
secrets during authentication.

Secure Remote Password (SRP) builds upon Diffie-Hellman key exchange (DHE), but adds two
long-term secrets. 𝑥 is held (or regenerated) by the client and 𝑣, the verifier, is stored by the
server. The verifier is created by the client from 𝑥 and transmitted only during initial enrollment,
and that’s the only time a secret is transmitted.

As described in detail in “Key derivation,” 𝑥 is derived from a account password and Secret Key.
The client computes 𝑣 = 𝑔𝑥 and sends 𝑣 to the server during initial enrollment.

During a normal sign-in, the client picks a secret random number 𝑎 and computes 𝐴 = 𝑔𝑎 as
described above in “Diffie-Hellman key exchange”. It sends 𝐴 to the server (along with its email
address).

The server picks a random number, 𝑏, but unlike unauthenticated Diffie-Hellman key exchange
(DHE), it computes 𝐵 as 𝐵 = 𝑘𝑣 + 𝑔𝑏 and sends that to the client.

Everyone (including a possible attacker) can now compute a non-secret 𝑢 from 𝐴 and 𝐵 by using
a hash.38 The server will calculate a raw 𝑆 as

38It doesn’t matter too much how 𝑢 is created, but it must be standardized so the server and client do it the same way.
We use the SHA256 hash of 𝐴|𝐵.
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𝑆 = (𝐴𝑣𝑢)𝑏 (B.9)

The client will calculate the same raw 𝑆 as

𝑆 = (𝐵 − 𝑘𝑔𝑥)𝑎+𝑢𝑥 (B.10)

The client and server will calculate the the same raw 𝑆 if 𝑣 is constructed from 𝑥 as in equation
(B.2) and𝐴 and𝐵 are constructed as described above. The proof is left as an exercise to the reader.
(And the proof this is the only feasible way for the values to be the same is left for advanced texts.)
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Appendix C: Verifying public keys

“Key verification is a weak point in public-key cryptography”39

At present, there’s no robust method for a user to verify the public key they’re encrypting data to
belongs to their intended recipient.40 As a consequence, it would be possible for a malicious or
compromised 1Password server to provide dishonest public keys to the user and run a successful
Man in the Middle (MITM) attack. Under such an attack, it would be possible for the 1Password
server to acquire vault encryption keys with little ability for users to detect or prevent this.

Story 12 illustrates what might happen in the case of such an attack during vault sharing.

Story 12: Mr. Talk is the cat in the middle
Molly (a dog) joins a team, and as she does, generates a public key pair. Let’s say the
public key exponent 17 and public modulus 4171: pk𝑀 = (17; 4171). (Of course in the
actual system that modulus would be hundreds of digits long.) Only Molly has access to the
corresponding private part, 𝑑𝑀 = 593. When Patty (another dog) encrypts something using
(17; 4171) only Molly, with her knowledge that 𝑑𝑀 is 593 can decrypt it.
Now suppose Mr. Talk (the neighbor’s cat) has taken control of the 1Password server and
database. Mr. Talk creates another public key, pk𝑇 = (17; 4183). Because Mr. Talk created
that key, he knows the corresponding private part of the key, 𝑑𝑇 , is 1905.
Patty wants to share a vault with Molly. Suppose that vault key is 1729. (In real life that
key would be a much bigger number.) So she asks the server for Molly’s public key. But
Mr. Talk, now in control of the server, doesn’t send her Molly’s real public key — he sends
the fake public key he created. Patty will encrypt the vault key, 1792, using the fake public
key that Mr. Talk created. Encrypting 1729 with (17; 4183) yields 2016. Patty sends that
up to the server for delivery to Molly.
Mr. Talk uses his knowledge of 𝑑𝑇 to decrypt the message. So he learns the vault key is
1729. He then encrypts that with Molly’s real public key, (17; 4147), and gets 2826. When
Molly next signs in, she gets that encrypted vault key and is able to decrypt it using her own
secret, 𝑑𝑀 . The message she receives is correctly encrypted with her public key, so she has
no reason to suspect anything went wrong.
Mr. Talk was able to learn the secrets Patty sent to Molly, but he wasn’t able to learn the
secret parts of their public keys.

39Free Software Foundation (1999)
40The role of public key encryption in 1Password is described in “How items are shared with anyone” and “Restoring a

user’s access to a vault.”
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Dangerous bend
The use of plain RSA (and small numbers) in Story 11 was to simplify the presentation. The
underlying math of the RSA algorithm must be wrapped in a construction that addresses
the numerous and large dangers of plain RSA.
For those who wish to check the math of the story recall that:
𝑑 = 𝑒−1 mod 𝜆(𝑁);a
that for encrypting a message 𝑐 = 𝑒𝑚 mod 𝑁 ;
and that decrypting a ciphertext 𝑚 = 𝑐𝑑 mod 𝑁 .
In our example 𝜆(4157) = lcm(43 − 1, 97 − 1) = 672,
and 𝜆(4183) = lcm(47 − 1, 89 − 1) = 2024.

a𝑒 is the public exponent and 𝜆(𝑁) is the Carmichael totient, which can be calculated from 𝑝 and 𝑞, the factors
of 𝑁 , as lcm(𝑝 − 1, 𝑞 − 1).

For simplicity, Story 12 only works through adding someone to a vault, but the potential attack
applies to any situation in which secrets are encrypted to another’s public key. Thus, this applies
during the final stages of recovery or when a vault is added to any group as well as when a vault
is shared with an individual. This threat is probably most significant with respect to the automatic
addition of vaults to the Recovery Group as described in “Restoring a user’s access to a vault.”

C.1 Types of defenses
The kind of problem we describe here is notoriously difficult to address, and it’s fair to say there
are no good solutions to it in general. There are, however, two categories of (poor) solution that
go some way toward addressing it in other systems.

C.1.1 Trust hierarchy
The first defense requires everyone with a public key to prove the key really is theirs to a trusted
third party. That trusted third party would then sign or certify the public key as belonging to who
it says it belongs to. The user of the public key would check the certification before encrypting
anything with that key.

Creating or using a trust hierarchy isn’t particularly feasible within 1Password, as each individual
user would need to prove to a third party their key is theirs. That third party cannot be AgileBits or
the 1Password server – the goal is to defend against a Man in the Middle (MITM) attack launched
from within the 1Password server. Although the 1Password clients could assist in some of the
procedure, it would place costly burden on each user to prove their ownership of a public key and
publish it.

C.1.2 User-to-user verification
The second approach is to enable users to verify keys themselves. They need to perform that
verification over a communication channel that’s not controlled by 1Password. Patty needs to talk
directly to Molly, asking Molly to describe pk𝑀𝑎

in a manner that will allow Patty to distinguish it
from a maliciously crafted pk𝑀𝑓

.

In the case of RSA keys, the crucial values may include a number that would be hundreds of digits
long if written out in decimal notation. Thus a cryptographic hash of the crucial numbers is used,
which is then made available presented in some form or other. Personal keysets also contain an
Elliptic Curve Digital Signature Algorithm (ECDSA) key pair that’s used for signing. These keys
are far shorter than RSA keys, but may still be too large to be directly compared by humans.
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C.2. THE PROBLEM REMAINS

Recent research41 has confirmed the long suspected belief that the form of fingerprints makes
comparisons difficult and subject to security sensitive errors. Such research does point to ways in
which the form of fingerprints can be improved, and it’s research we’re closely following.

The difficulty for users with verifying keys via fingerprints isn’t just the technicalities of the fin-
gerprint itself, but in understanding what they’re for and how to make use of them. As Vaziripour,
J. Wu, O’Neill, et al. point out, “The common conclusion of [prior research] is that users are vul-
nerable to attacks and cannot locate or perform the authentication ceremony without sufficient
instruction. This is largely due to users’ incomplete mental model of threats and usability problems
within secure messaging applications.”42

Users may need to understand:

• Fingerprints aren’t secret.

• Fingerprints should be verified before using the key to which they are bound.

• Fingerprints must be verified over an authentic and tamper-proof channel.

• That communication channel must be different from the communication system the user is
trying to establish.

The developers of Signal, a well-respected secure messaging system, summarized some difficulties
with fingerprints43

Publishing fingerprints requires users to have some rough conceptual knowledge of
what a key is, its relationship to a fingerprint, and how that maps to the privacy of
communication.

The practice of publishing fingerprints is based in part on the original idea that users
would be able to manage those keys over a long period of time. This has not proved true,
and has become even less true with the rise of mobile devices.

Although their remediation within Signal has a great deal of merit, only a small portion of Signal
users attempt the process of key verification. When they’re instructed to do so (in a laboratory
setting) they often don’t complete the process successfully.44

C.2 The problem remains
We’re aware of the threats posed by Man in the Middle (MITM), and users should be aware of
those, too. We’ll continue to look for solutions, but we’re unlikely to adopt an approach that places
a significant additional burden on the user unless we can have some confidence in the efficacy of
such a solution.

41Dechand et al. (2016)
42Vaziripour et al. (2018)
43Marlinspike (2016)
44Vaziripour et al. (2017) and Vaziripour et al. (2018)
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account password
Something you must remember and type when unlocking 1Password. It’s never transmitted
from your devices. Previously known as Master Password. 7, 8, 9, 10, 11, 14, 16, 30, 32, 33,
34, 35, 36, 37, 39, 44, 47, 48, 50, 51, 53, 55, 66, 69, 71, 73, 74, 77

Account Unlock Key (AUK)
Key used to decrypt a user’s personal key set. It’s derived from the user’s account password
and Secret Key. Previously known as the Master Unlock Key. 16, 30, 32, 33, 35, 36, 37, 39,
48, 50, 55, 56, 69, 70, 71, 73

Advanced Encryption Standard (AES)
Probably the best studied and most widely used symmetric block cipher. 15, 56, 60

authentication
The process of one entity proving its identity to another. Typically the authenticating party
does this by proving to the verifier that it knows a particular secret that only the authenticator
should know. 11, 12, 13, 14, 20, 25, 26, 27, 28, 30, 32, 33, 35, 37, 39, 40, 42, 51, 53, 54, 57,
60, 61, 62

BigNum
Some cryptographic algorithms involve arithmetic (particularly exponentiation) on numbers
that are hundreds of digits long. These require the use of Big Number libraries in the software.
32

Chosen Ciphertext Attacks (CCA)
A class of attacks during which the attacker modifies encrypted traffic in specific ways and
may learn plain text by observing how the decryption fails. 15

confidentiality
Data confidentiality involves keeping data secret. Typically this is achieved by encrypting the
data. 11, 14, 61, 62

CPace
A modern PAKE using a shared secret, defined by Abdalla, Haase, and Hesse (CPace, a bal-
anced composable PAKE). 40, 41
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credential bundle
A bundle containing a randomly generated SRP-𝑥 and Account Unlock Key (AUK), used to
sign in to 1Password when signing in with single sign-on (SSO). It’s encrypted by the device
key and stored on 1Password servers. See also Device Key 37, 39, 40, 42, 62

Cryptographically Secure Pseudo-Random Number Generator (CSPRNG)
A random number generator whose output is indistinguishable from truly random. Despite
“pseudo” in the name, a CSPRNG is entirely appropriate for generating cryptographic keys.
29, 50

device key
A cryptographic key stored on a 1Password client that uses single sign-on (SSO). It’s used to
decrypt the credential bundle it receives from the server upon successful sign in. See SSO
37, 39, 40, 42, 72

Diffie-Hellman key exchange (DHE)
An application of the discrete logarithm problem (DLP) to provide a way for parties to decide
upon a secret key without revealing any secrets during the communication. It’s named after
Whitfield Diffie and Martin Hellman who published it in 1976. 75, 76, 77

discrete logarithm problem (DLP)
If 𝑦≡𝑔𝑥mod𝑝 (for a carefully chosen𝑝and some other conditions) it’s possible to perform expo-
nentiation to compute 𝑦 from the other variables, but it’s thought to be infeasible to compute
𝑥 from 𝑦. Computing 𝑥 from 𝑦 (and the other parameters) is reversing the exponentiation
and is taking a logarithm. 75

Ellipic Curve Cryptography (ECC)
A public key encryption system able to work with much smaller keys than are used for other
public key systems. 17

Elliptic Curve Digital Signature Algorithm (ECDSA)
The elliptic curve digital signature algorithm is digital signature algorithm based on elliptic
curve cryptography described in FIPS PUB 186-4^8^. 80

Emergency Kit
Contains your Secret Key, account password, and details about your account. Your Emer-
gency Kit should be printed and stored in a secure place, and used if you forget your account
password or lose your Secret Key. 9, 10
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end-to-end (E2E)
Data is only encrypted or decrypted locally on the users’ devices with keys that only the end
users possess. This protects the data confidentiality and integrity from compromises during
transport or remote storage. 11, 14, 40, 66, 73

Galois Counter Mode (GCM)
An authenticated encryption mode for use with block ciphers. 15, 56, 60

hash-based key derivation function (HKDF)
A key derivation function that uses HMAC for key extraction and expansion. Unlike PBKDF2,
it’s not designed for password strengthening. 16, 23, 31, 32, 50, 51

HTTP Strict Transport Security (HSTS)
Strict Transport Security has the server instruct the client that insecure HTTP is never to be
used when talking to the server. 61, 67

infeasible
Effectively impossible. It’s not technically impossible for a single monkey placed in front
of a manual typewriter for six weeks to produce the complete works of Shakespeare. It is,
however, infeasible, meaning that the probability of it happening is so outrageously low that
can be treated as impossible. 74, 75

integrity
Preventing or detecting tampering with the data. Typically done through authenticated en-
cryption or message authentication. 11, 61

JSON Web Key (JWK)
A format for describing and storing cryptographic keys defined in RFC 7517. 16, 32

JSON Web Token (JWT)
A means of representing claims to be transferred between two parties and defined in RFC
7517. These are typically signed cryptographically. 57, 59

key encryption key (KEK)
An encryption key used for the sole purpose of encrypting another cryptographic key. 16

key set
How collections of keys and their metadata are organized within 1Password. 16, 17, 19, 28,
35, 36, 47, 49, 51, 52, 58, 69
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linked app or browser
A client trusted to use SSO by having set up a device key and created a corresponding cre-
dential bundle. 40, 41

Man in the Middle (MITM)
A Man in the Middle attack has Alice believing she’s encrypting data to Bob, while she’s
actually encrypting her data to a malicious actor who then re-encrypts the data to Bob. The
typical defense for such an attack is for Alice and Bob to manually verify they’re using the
correct public keys for each other. The other approach is to rely on a trusted third party who
independently verifies and signs Bob’s public key. 68, 79, 80, 81

mutual authentication
Mutual authentication is a process in which all parties prove their identity to each other. 60,
61, 77

nonce
A non-secret value used in conjunction with an encryption key to ensure relationships be-
tween multiple plaintexts are not preserved in the encrypted data. Never encrypt different
data with the same combination of key and nonce. Ideally, most software developers using
encryption – as they should – would never have to interact with or much less understand the
difference between them. We do not live in such a world. 56

passkey
A credential with which you authenticate to a server. Unlike a password, the passkey isn’t
sent to the server to authenticate. Instead, the passkey signs a challenge the server provides
to your device. This process is also known as WebAuthn or FIDO2 authentication. 37, 39, 41,
42, 51, 62, 72

password-authenticated key exchange (PAKE)
Password-based key exchange protocol allows for a client and server to mutually authenticate
each other and establish a key for their session. It relies on either a secret each have or
related secrets that each have. 13, 50, 51, 73

primary account
A local client may distinguish a single account it knows about as the primary account. Un-
locking this account may automatically unlock secondary accounts the client may handle. See
also secondary account 69

Recovery Group
The 1Password Group that has a copy of the vault keys for vaults that may need to be recov-
ered if account passwords or Secret Keys are lost. 47, 48, 49, 50, 68
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Recovery Group member
A member of a Recovery Group. See Recovery Group 47, 48, 68, 72

RESTful
The adjectival form of representational state transfer (REST). See REST 53

salt
A non-secret value added to either an encryption process or hashing to ensure the result of
the encryption is unique. Salts are typically random and unique. 16, 30, 31, 32, 33, 34, 35,
36, 73

secondary account
An account that a client may unlocked automatically when the primary account is unlocked.
See also primary account 70

Secret Key
A randomly generated user secret key that is created upon first signup. It’s created and
stored locally. Along with the user’s account password, it’s required both for decrypting data
and for authenticating to the server. The Secret Key prevents an attacker who has acquired
remotely stored data from attempting to guess a user’s account password. Previously known
as the Account Key. 7, 8, 9, 10, 11, 14, 16, 30, 32, 33, 34, 35, 36, 37, 39, 44, 47, 48, 50, 51,
53, 56, 66, 67, 69, 71, 72, 73, 74, 77

Secure Remote Password (SRP)
A method for both a client and server to authenticate each other without either revealing
any secrets. In the process, they also agree on an encryption key to be used for the current
session. We’re using Version 6 with a modified key derivation function. 11, 13, 32, 34, 37,
51, 60, 61, 62, 73, 74, 77

single sign-on (SSO)
In the setting of a company or another organization, when you are provided with a single set
of username, password, or other authentication factors to log in to services that company or
organization provides for you. It’s one of themethods that can be used to sign in to 1Password.
37, 39, 40, 41, 42, 62, 72

slow hash
A cryptographic hash function designed to be computationally expensive. Used for hashing
passwords or other guessible inputs to make guessing more expensive to an attacker who
has the hash output. 32
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SRP-𝑣
The Secure Remote Password (SRP) verifier, 𝑣, used by the server to authenticate the client.
51

SRP-𝑥
The client secret, 𝑥, used by the Secure Remote Password (SRP) protocol. Derived from the
user’s account password and Secret Key. 30, 33, 35, 36, 37, 39, 48, 51, 55, 56, 70

Transport Layer Security (TLS)
The successor to SSL. It puts the “S” in HTTPS. 13, 35, 60, 61, 62, 67

two-secret key derivation (2SKD)
Two different secrets, each with their own security properties, are used in deriving encryption
and authentication keys. In 1Password, these are your account password (something you
know) and your Secret Key (a high-entropy secret you have on your device). 7, 8, 14, 30, 47,
71, 73, 74

Unicode Normalization Form Compatibility Decomposition (NFKD)
A consistent normal form for Unicode characters that could otherwise be different sequences
of bytes. 31

Universally Unique Identifier (UUID)
A large arbitrary identifier for an entity. No two entities in the universe should have the same
UUID. 23, 25, 26, 33, 34, 35, 56
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Changelog

v0.5.2 — 2026-01-15
• New:

– Added Acknowledgments section.

– Added PDF version of the current document.

– Various formatting additions (for PDF appearance/layout, to improve glossary display).

• Improved:

– Changed title of document to include “white paper.”

– Minor typographical corrections (e.g., uppercase letters to lowercase, missing and mis-
placed punctuation).

v0.5.1 — 2025-01-16
• Improved: Restore release, release date, and changelog.

v0.5 — 2024-12-14
• New: New primary format: bookdown

• Improved: Various typographical fixes and wording improvements throughout.

v0.4.7 — 2024-07-20
• New: Describe how the ability to regain access to an account with recovery codes works.

v0.4.6 — 2023-10-26
• New: Describe how unlocking 1Password with a passkey works.

• Improved:

– Note the “Manage Groups” permission has equivalent cryptographic access as the Re-
covery Group.

– Describe how 1Password 8 handles multiple accounts in an app in “Beware of the Leop-
ard.”

– Add a caveat about replay protections in “Transport Security.”

• Corrected: Improved two sentences in “How items are shared with anyone.”

v0.4.5 — 2023-06-19
• Improved:

– Version information is less gitty.

– Corrected an erroneous sentence in “How items are shared with anyone.”

• Corrected: Handshake values are now labelled correctly in the CPace diagram in the SSO
chapter.
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v0.4.4 — 2023-05-10
• Improved:

– Improved line breaking.

– Removed placeholder sections and chapters.

v0.4.3 — 2023-04-06
• Improved:

– Updated name of item sharing.

– More consistent naming.

v0.4.2 — 2023-03-31
• New: Describe how unlocking 1Password with SSO works.

v0.4.1 — 2023-02-17
• New: PBKDF2 iteration count increased from 100,000 to 650,000.

• Improved:

– Removed empty placeholder chapter “How our servers are managed.”

– Use SHA256 in examples instead of SHA-1.

• Corrected:

– Changelog date for 0.4.0 was off by a year.

– Various typographical errors.

v0.4.0 — 2021-10-26
• New: New chapter: “How items are shared with anyone.”

• Improved:

– More consistent referencing of chapters and sections.

– s/Master Unlock Key/Account Unlock Key/

– Updated discussion of Secret Key storage in section Locally exposed Secret Keys.

– s/Master Password/account password/

– Hinted at OP8 resolution of unlocking one account with a different account password.

– A few fewer typos.

• Corrected: Fixed the example calculation of 𝑑 in and around Story 11 on 90.

v0.3.1 — 2021-04-19
• Improved:

– Expanded 1Password Connect.

– Fewer typos.
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Changelog

v0.3.0 — 2021-04-13
• Improved:

– Cover page update.

– Updated Transport Security, particularly with respect to pinning and EV certificates.

– Updated Account password section in Account password and Secret Key to reflect cur-
rent practice.

– Title page and fonts should no longer break certain versions of Acrobat.

• New: New sections: 1Password Connect and Clients handling multiple accounts, on unlock-
ing multiple accounts with one account password.

v0.2.10 — 2019-01-12
• Improved: No proprietary fonts (in preparation for opening source).

v0.2.9 — 2018-12-30
• Improved:

– Fixed text citation in MitM appendix.

– Less verbose bibliographic data in margins.

v0.2.8 — 2018-12-30
• New:

– Appendix describing MitM threat.

– Mention of MitM in “Beware of Leopard” appendix with pointer to new appendix.

• Improved:

– Typos.

– Margin citation format changes.

v0.2.7 — 2018-09-10
• New:

– Mentioned ECDSA key creation.

– Updated RNG table to include new clients, and switch from MSCAPI to CNG.

• Improved:

– Further clarified web-client risks.

– Corrected some errors and inconsistencies in SRP appendix.

– Typos.
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v0.2.6 — 2017-04-11
• Changed:

– The Account Key has been renamed “Secret Key.”

– Substantially restructured presentation of authentication.

• New: New section: A modern approach to authentication should better communicate why
1Password’s authentication is designed as it is and providing a top level view before getting
into the details of key derivation.

• Improved:

– Improved presentation of two-secret key derivation (2SKD)

– Removed explicit comparison of 2SKD and multi-factor authentication (MFA).

– s/Account Key/Secret Key/g, but not all graphics have been updated to reflect the new
name.

– Typos fixed and minor wording improvements throughout.

– TeXnical changes to improve line breaking.

v0.2.5 — 2017-02-20
• Improved:

– Even more typos fixed.

– Even more minor wording and clarification improvements.

– Document title reflects Teams, Families and individual accounts.

– Text refers to “1Password” instead of “1Password for Teams and Families.”

v0.2.4 — 2016-09-28
• New:

– Detailed section on Restoring a User’s Access to a Vault.

– New presentation of two-secret key derivation (2SKD): AK and MP rewritten in terms of
2SKD.

• Improved:

– Typography.

– More detail in “Beware of Leopard.”

– More math in SRP.

– Typos fixed and minor wording improvements throughout.

– Many small improvements and expansions throughout the text.

• Fixed:

– Many many typos and phrasing awkwardnesses.

– Colors are no longer emetic.
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Changelog

v0.2.3 — 2015-11-27
• New:

– Documented how server-side data is stored and which keys are exposed.

– Expanded explanation of SRP authentication.

• Fixed: Numerous typos.

v0.2.2 — 2015-11-03
• New:

– First public release

– First release of the 1Password for Teams Security Design paper. This document will help
you understand howwe implemented all the awesome things in 1Password for Teams and
how we keep your secrets, secret.
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